5.2. Terminology

5.2. Terminology
While it is not necessary to understand all of the details
 of the various components in the X Window System and how they
 interact, some basic knowledge of these components can be
 useful.
	X server
	X was designed from the beginning to be
	 network-centric, and adopts a “client-server”
	 model. In this model, the “X server” runs on
	 the computer that has the keyboard, monitor, and mouse
	 attached. The server's responsibility includes tasks such
	 as managing the display, handling input from the keyboard
	 and mouse, and handling input or output from other devices
	 such as a tablet or a video projector. This confuses some
	 people, because the X terminology is exactly backward to
	 what they expect. They expect the “X server”
	 to be the big powerful machine down the hall, and the
	 “X client” to be the machine on their
	 desk.

	X client
	Each X application, such as
	 XTerm or
	 Firefox, is a
	 “client”. A client sends messages to the
	 server such as “Please draw a window at these
	 coordinates”, and the server sends back messages
	 such as “The user just clicked on the OK
	 button”.
In a home or small office environment, the X server
	 and the X clients commonly run on the same computer. It
	 is also possible to run the X server on a less powerful
	 computer and to run the X applications on a more powerful
	 system. In this scenario, the communication between the X
	 client and server takes place over the network.

	window manager
	X does not dictate what windows should look like
	 on-screen, how to move them around with the mouse, which
	 keystrokes should be used to move between windows, what
	 the title bars on each window should look like, whether or
	 not they have close buttons on them, and so on. Instead,
	 X delegates this responsibility to a separate window
	 manager application. There are dozens of window
	 managers available. Each window manager provides
	 a different look and feel: some support virtual desktops,
	 some allow customized keystrokes to manage the desktop,
	 some have a “Start” button, and some are
	 themeable, allowing a complete change of the desktop's
	 look-and-feel. Window managers are available in the
	 x11-wm category of the Ports
	 Collection.
Each window manager uses a different configuration
	 mechanism. Some expect configuration file written by hand
	 while others provide graphical tools for most
	 configuration tasks.

	desktop environment
	KDE and
	 GNOME are considered to be
	 desktop environments as they include an entire suite of
	 applications for performing common desktop tasks. These
	 may include office suites, web browsers, and games.

	focus policy
	The window manager is responsible for the mouse focus
	 policy. This policy provides some means for choosing
	 which window is actively receiving keystrokes and it
	 should also visibly indicate which window is currently
	 active.
One focus policy is called
	 “click-to-focus”. In this model, a window
	 becomes active upon receiving a mouse click. In the
	 “focus-follows-mouse” policy, the window that
	 is under the mouse pointer has focus and the focus is
	 changed by pointing at another window. If the mouse is
	 over the root window, then this window is focused. In the
	 “sloppy-focus” model, if the mouse is moved
	 over the root window, the most recently used window still
	 has the focus. With sloppy-focus, focus is only changed
	 when the cursor enters a new window, and not when exiting
	 the current window. In the “click-to-focus”
	 policy, the active window is selected by mouse click. The
	 window may then be raised and appear in front of all other
	 windows. All keystrokes will now be directed to this
	 window, even if the cursor is moved to another
	 window.
Different window managers support different focus
	 models. All of them support click-to-focus, and the
	 majority of them also support other policies. Consult the
	 documentation for the window manager to determine which
	 focus models are available.

	widgets
	Widget is a term for all of the items in the user
	 interface that can be clicked or manipulated in some way.
	 This includes buttons, check boxes, radio buttons, icons,
	 and lists. A widget toolkit is a set of widgets used to
	 create graphical applications. There are several popular
	 widget toolkits, including Qt, used by
	 KDE, and GTK+, used by
	 GNOME. As a result,
	 applications will have a different look and feel,
	 depending upon which widget toolkit was used to create the
	 application.

25.2. USB Virtual Serial Ports
25.2.1. Configuring USB Device Mode Serial Ports
Virtual serial port support is provided by templates
	number 3, 8, and 10. Note that template 3 works with
	Microsoft Windows 10 without the need for special drivers
	and INF files. Other host operating systems work with all
	three templates. Both usb_template(4) and umodem(4)
	kernel modules must be loaded.
To enable USB device mode serial ports, add those lines
	to /etc/ttys:
ttyU0	"/usr/libexec/getty 3wire"	vt100	onifconsole secure
ttyU1	"/usr/libexec/getty 3wire"	vt100	onifconsole secure
Then add these lines to
	/etc/devd.conf:
notify 100 {
	match "system"		"DEVFS";
	match "subsystem"	"CDEV";
	match "type"		"CREATE";
	match "cdev"		"ttyU[0-9]+";
	action "/sbin/init q";
};
Reload the configuration if
	devd(8) is already running:
service devd restart
Make sure the necessary modules are loaded and the
	correct template is set at boot by adding
	those lines to /boot/loader.conf,
	creating it if it does not already exist:
umodem_load="YES"
hw.usb.template=3
To load the module and set the template without rebooting
	use:
kldload umodem
sysctl hw.usb.template=3
25.2.2. Connecting to USB Device Mode Serial Ports from
	FreeBSD
To connect to a board configured to provide USB device
	mode serial ports, connect the USB host, such as a laptop, to
	the boards USB OTG or USB client port. Use
	pstat -t on the host to list the terminal
	lines. Near the end of the list you should see a USB serial
	port, eg "ttyU0". To open the connection, use:
cu -l /dev/ttyU0
After pressing the Enter key a few times you will see
	a login prompt.
25.2.3. Connecting to USB Device Mode Serial Ports from
	macOS
To connect to a board configured to provide USB device
	mode serial ports, connect the USB host, such as a laptop,
	to the boards USB OTG or USB client port. To open the
	connection, use:
cu -l /dev/cu.usbmodemFreeBSD1
25.2.4. Connecting to USB Device Mode Serial Ports from
	Linux
To connect to a board configured to provide USB device
	mode serial ports, connect the USB host, such as a laptop,
	to the boards USB OTG or USB client port. To open the
	connection, use:
minicom -D /dev/ttyACM0
25.2.5. Connecting to USB Device Mode Serial Ports from
	Microsoft Windows 10
To connect to a board configured to provide USB device
	mode serial ports, connect the USB host, such as a laptop,
	to the boards USB OTG or USB client port. To open a
	connection you will need a serial terminal program, such as
	PuTTY. To check the COM port name
	used by Windows, run Device Manager, expand "Ports (COM &
	LPT)". You will see a name similar to "USB Serial Device
	(COM4)". Run serial terminal program of your choice, for
	example PuTTY. In the
	PuTTY dialog set "Connection type"
	to "Serial", type the COMx obtained from Device Manager in the
	"Serial line" dialog box and click Open.
Chapter 31. Advanced Networking
31.1. Synopsis
This chapter covers a number of advanced networking
 topics.
After reading this chapter, you will know:
	The basics of gateways and routes.

	How to set up USB tethering.

	How to set up IEEE® 802.11 and Bluetooth®
	 devices.

	How to make FreeBSD act as a bridge.

	How to set up network PXE
	 booting.

	How to set up IPv6 on a FreeBSD
	 machine.

	How to enable and utilize the features of the Common
	 Address Redundancy Protocol (CARP) in
	 FreeBSD.

	How to configure multiple VLANs on
	 FreeBSD.

	Configure bluetooth headset.

Before reading this chapter, you should:
	Understand the basics of the
	 /etc/rc scripts.

	Be familiar with basic network terminology.

	Know how to configure and install a new FreeBSD kernel
	 (Chapter 8, Configuring the FreeBSD Kernel).

	Know how to install additional third-party software
	 (Chapter 4, Installing Applications: Packages and Ports).

2.9. Network Interfaces
2.9.1. Configuring Network Interfaces
Next, a list of the network interfaces found on the
	computer is shown. Select the interface to configure.
[image: Choose a Network Interface]

Figure 2.49. Choose a Network Interface

If an Ethernet interface is selected, the installer will
	skip ahead to the menu shown in Figure 2.53, “Choose IPv4 Networking”. If a wireless
	network interface is chosen, the system will instead scan for
	wireless access points:
[image: Scanning for Wireless Access Points]

Figure 2.50. Scanning for Wireless Access Points

Wireless networks are identified by a Service Set
	Identifier (SSID), a short, unique name
	given to each network. SSIDs found during
	the scan are listed, followed by a description of the
	encryption types available for that network. If the desired
	SSID does not appear in the list, select
	[Rescan] to scan again. If
	the desired network still does not appear, check for problems
	with antenna connections or try moving the computer closer to
	the access point. Rescan after each change is made.
[image: Choosing a Wireless Network]

Figure 2.51. Choosing a Wireless Network

Next, enter the encryption information for connecting to
	the selected wireless network. WPA2
	encryption is strongly recommended as older encryption types,
	like WEP, offer little security. If the
	network uses WPA2, input the password, also
	known as the Pre-Shared Key (PSK). For
	security reasons, the characters typed into the input box are
	displayed as asterisks.
[image: WPA2 Setup]

Figure 2.52. WPA2 Setup

Next, choose whether or not an IPv4
	address should be configured on the Ethernet or wireless
	interface:
[image: Choose IPv4 Networking]

Figure 2.53. Choose IPv4 Networking

There are two methods of IPv4
	configuration. DHCP will automatically
	configure the network interface correctly and should be used
	if the network provides a DHCP server.
	Otherwise, the addressing information needs to be input
	manually as a static configuration.
Note:
Do not enter random network information as it will not
	 work. If a DHCP server is not available,
	 obtain the information listed in Required Network Information from
	 the network administrator or Internet service
	 provider.

If a DHCP server is available, select
	[Yes] in the next menu to
	automatically configure the network interface. The installer
	will appear to pause for a minute or so as it finds the
	DHCP server and obtains the addressing
	information for the system.
[image: Choose IPv4 DHCP Configuration]

Figure 2.54. Choose IPv4 DHCP
	 Configuration

If a DHCP server is not available,
	select [No] and input the
	following addressing information in this menu:
[image: IPv4 Static Configuration]

Figure 2.55. IPv4 Static Configuration

	IP Address - The
	 IPv4 address assigned to this computer.
	 The address must be unique and not already in use by
	 another piece of equipment on the local network.

	Subnet Mask - The subnet mask for
	 the network.

	Default Router - The
	 IP address of the network's default
	 gateway.

The next screen will ask if the interface should be
	configured for IPv6. If
	IPv6 is available and desired, choose
	[Yes] to select it.
[image: Choose IPv6 Networking]

Figure 2.56. Choose IPv6 Networking

IPv6 also has two methods of
	configuration. StateLess Address AutoConfiguration
	(SLAAC) will automatically request the
	correct configuration information from a local router. Refer
	to rfc4862
	for more information. Static configuration requires manual
	entry of network information.
If an IPv6 router is available, select
	[Yes] in the next menu to
	automatically configure the network interface. The installer
	will appear to pause for a minute or so as it finds the router
	and obtains the addressing information for the system.
[image: Choose IPv6 SLAAC Configuration]

Figure 2.57. Choose IPv6 SLAAC Configuration

If an IPv6 router is not available,
	select [No] and input the
	following addressing information in this menu:
[image: IPv6 Static Configuration]

Figure 2.58. IPv6 Static Configuration

	IPv6 Address - The
	 IPv6 address assigned to this computer.
	 The address must be unique and not already in use by
	 another piece of equipment on the local network.

	Default Router - The
	 IPv6 address of the network's default
	 gateway.

The last network configuration menu is used to configure
	the Domain Name System (DNS) resolver,
	which converts hostnames to and from network addresses. If
	DHCP or SLAAC was used
	to autoconfigure the network interface, the Resolver
	 Configuration values may already be filled in.
	Otherwise, enter the local network's domain name in the
	Search field. DNS #1
	and DNS #2 are the IPv4
	and/or IPv6 addresses of the
	DNS servers. At least one
	DNS server is required.
[image: DNS Configuration]

Figure 2.59. DNS Configuration

Once the interface is configured, select a mirror site
	that is located in the same region of the world as the
	computer on which FreeBSD is being installed. Files can be
	retrieved more quickly when the mirror is close to the
	target computer, reducing installation time.
[image: Choosing a Mirror]

Figure 2.60. Choosing a Mirror

6.3. Productivity
When it comes to productivity, users often look for an
 office suite or an easy-to-use word processor. While some
 desktop environments like
 KDE provide an office suite, there
 is no default productivity package. Several office suites and
 graphical word processors are available for FreeBSD, regardless
 of the installed window manager.
This section demonstrates how to install the following
 popular productivity software and indicates if the application
 is resource-heavy, takes time to compile from ports, or has any
 major dependencies.
	Application Name	Resources Needed	Installation from Ports	Major Dependencies
	Calligra	light	heavy	KDE
	AbiWord	light	light	Gtk+ or
	 GNOME
	The Gimp	light	heavy	Gtk+
	Apache
		OpenOffice	heavy	huge	JDK™ and
	 Mozilla
	LibreOffice	somewhat heavy	huge	Gtk+, or
	 KDE/
	 GNOME, or
	 JDK™

6.3.1. Calligra
The KDE desktop environment includes
	an office suite which can be installed separately from
	KDE.
	Calligra includes standard
	components that can be found in other office suites.
	Words is the word processor,
	Sheets is the spreadsheet program,
	Stage manages slide presentations,
	and Karbon is used to draw
	graphical documents.
In FreeBSD, editors/calligra can be
	installed as a package or a port. To install the
	package:
pkg install calligra
If the package is not available, use the Ports Collection
	instead:
cd /usr/ports/editors/calligra
make install clean
6.3.2. AbiWord
AbiWord is a free word
	processing program similar in look and feel to
	Microsoft® Word. It is fast,
	contains many features, and is user-friendly.
AbiWord can import or export
	many file formats, including some proprietary ones like
	Microsoft® .rtf.
To install the AbiWord
	package:
pkg install abiword
If the package is not available, it can be compiled from
	the Ports Collection:
cd /usr/ports/editors/abiword
make install clean
6.3.3. The GIMP
For image authoring or picture retouching,
	The GIMP provides a sophisticated
	image manipulation program. It can be used as a simple paint
	program or as a quality photo retouching suite. It supports a
	large number of plugins and features a scripting interface.
	The GIMP can read and write a wide
	range of file formats and supports interfaces with scanners
	and tablets.
To install the package:
pkg install gimp
Alternately, use the Ports Collection:
cd /usr/ports/graphics/gimp
make install clean
The graphics category (freebsd.org/ports/graphics.html)
	of the Ports Collection contains several
	GIMP-related plugins, help files,
	and user manuals.
6.3.4. Apache OpenOffice
Apache OpenOffice is an open
	source office suite which is developed under the wing of the
	Apache Software Foundation's Incubator. It includes all of
	the applications found in a complete office productivity
	suite: a word processor, spreadsheet, presentation manager,
	and drawing program. Its user interface is similar to other
	office suites, and it can import and export in various popular
	file formats. It is available in a number of different
	languages and internationalization has been extended to
	interfaces, spell checkers, and dictionaries.
The word processor of Apache
	 OpenOffice uses a native XML file format for
	increased portability and flexibility. The spreadsheet
	program features a macro language which can be interfaced
	with external databases. Apache
	 OpenOffice is stable and runs natively on
	Windows®, Solaris™, Linux®, FreeBSD, and Mac OS® X.
	More information about Apache
	 OpenOffice can be found at openoffice.org.
	For FreeBSD specific information refer to porting.openoffice.org/freebsd/.
To install the Apache
	 OpenOffice package:
pkg install apache-openoffice
Once the package is installed, type the following command
	to launch Apache OpenOffice:
% openoffice-X.Y.Z
where X.Y.Z is the version
	number of the installed version of Apache
	 OpenOffice. The first time
	Apache OpenOffice launches, some
	questions will be asked and a
	.openoffice.org folder will be created in
	the user's home directory.
If the desired Apache
	 OpenOffice package is not available, compiling
	the port is still an option. However, this requires a lot of
	disk space and a fairly long time to compile:
cd /usr/ports/editors/openoffice-4
make install clean
Note:
To build a localized version, replace the previous
	 command with:
make LOCALIZED_LANG=your_language install clean
Replace
	 your_language with the correct
	 language ISO-code. A list of supported language codes is
	 available in
	 files/Makefile.localized, located in
	 the port's directory.

6.3.5. LibreOffice
LibreOffice is a free software
	office suite developed by documentfoundation.org.
	It is compatible with other major office suites and available
	on a variety of platforms. It is a rebranded fork of
	Apache OpenOffice and includes
	applications found in a complete office productivity suite:
	a word processor, spreadsheet, presentation manager, drawing
	program, database management program, and a tool for creating
	and editing mathematical formulæ. It is available in
	a number of different languages and internationalization has
	been extended to interfaces, spell checkers, and
	dictionaries.
The word processor of
	LibreOffice uses a native XML file
	format for increased portability and flexibility. The
	spreadsheet program features a macro language which can be
	interfaced with external databases.
	LibreOffice is stable and runs
	natively on Windows®, Linux®, FreeBSD, and Mac OS® X.
	More information about LibreOffice
	can be found at libreoffice.org.
To install the English version of the
	LibreOffice package:
pkg install libreoffice
The editors category (freebsd.org/ports/editors.html)
	of the Ports Collection contains several localizations for
	LibreOffice. When installing a
	localized package, replace libreoffice
	with the name of the localized package.
Once the package is installed, type the following command
	to run LibreOffice:
% libreoffice
During the first launch, some questions will be asked
	and a .libreoffice folder will be created
	in the user's home directory.
If the desired LibreOffice
	package is not available, compiling the port is still an
	option. However, this requires a lot of disk space and a
	fairly long time to compile. This example compiles the
	English version:
cd /usr/ports/editors/libreoffice
make install clean
Note:
To build a localized version,
	 cd into the port directory of
	 the desired language. Supported languages can be found
	 in the editors category (freebsd.org/ports/editors.html)
	 of the Ports Collection.

31.4. USB Tethering
Many cellphones provide the option to share their data
 connection over USB (often called "tethering"). This feature
 uses one of RNDIS, CDC,
 or a custom Apple® iPhone®/iPad®
 protocol.
	Android™ devices generally use the urndis(4)
	 driver.

	Apple® devices use the ipheth(4) driver.

	Older devices will often use the cdce(4)
	 driver.

Before attaching a device, load the appropriate driver
 into the kernel:
kldload if_urndis
kldload if_cdce
kldload if_ipheth
Once the device is attached
 ue0 will be
 available for use like a normal network device. Be sure that
 the “USB tethering” option is enabled on the
 device.
To make this change permanent and load the driver as a
 module at boot time, place the appropriate line of the following
 in /boot/loader.conf:
if_urndis_load="YES"
if_cdce_load="YES"
if_ipheth_load="YES"
23.3. Updating the Documentation Set
Documentation is an integral part of the FreeBSD operating
 system. While an up-to-date version of the FreeBSD documentation
 is always available on the FreeBSD web site (https://www.freebsd.org/doc/),
 it can be handy to have an up-to-date, local copy of the FreeBSD
 website, handbooks, FAQ, and articles.
This section describes how to use either source or the FreeBSD
 Ports Collection to keep a local copy of the FreeBSD documentation
 up-to-date.
For information on editing and submitting corrections to the
 documentation, refer to the FreeBSD Documentation Project Primer
 for New Contributors (https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/).
23.3.1. Updating Documentation from Source
Rebuilding the FreeBSD documentation from source requires a
	collection of tools which are not part of the FreeBSD base
	system. The required tools can be installed from the
	textproc/docproj package or port developed
	by the FreeBSD Documentation Project.
Once installed, use svnlite to
	fetch a clean copy of the documentation source:
svnlite checkout https://svn.FreeBSD.org/doc/head /usr/doc
The initial download of the documentation sources may take
	a while. Let it run until it completes.
Future updates of the documentation sources may be fetched
	by running:
svnlite update /usr/doc
Once an up-to-date snapshot of the documentation sources
	has been fetched to /usr/doc, everything
	is ready for an update of the installed documentation.
A full update of all available languages may be performed
	by typing:
cd /usr/doc
make install clean
If an update of only a specific language is desired,
	make can be invoked in a language-specific
	subdirectory of
	/usr/doc:
cd /usr/doc/en_US.ISO8859-1
make install clean
An alternative way of updating the documentation is to run
	this command from /usr/doc or the desired
	language-specific subdirectory:
make update
The output formats that will be installed may be specified
	by setting FORMATS:
cd /usr/doc
make FORMATS='html html-split' install clean
Several options are available to ease the process of
	updating only parts of the documentation, or the build of
	specific translations. These options can be set either as
	system-wide options in /etc/make.conf, or
	as command-line options passed to
	make.
The options include:
	DOC_LANG
	The list of languages and encodings to build and
	 install, such as en_US.ISO8859-1 for
	 English documentation.

	FORMATS
	A single format or a list of output formats to be
	 built. Currently, html,
	 html-split, txt,
	 ps, and pdf are
	 supported.

	DOCDIR
	Where to install the documentation. It defaults to
	 /usr/share/doc.

For more make variables supported as
	system-wide options in FreeBSD, refer to
	make.conf(5).
23.3.2. Updating Documentation from Ports
Based on the work of Marc Fonvieille. The previous section presented a method for updating the
	FreeBSD documentation from sources. This section describes an
	alternative method which uses the Ports Collection and makes
	it possible to:
	Install pre-built packages of the documentation,
	 without having to locally build anything or install the
	 documentation toolchain.

	Build the documentation sources through the ports
	 framework, making the checkout and build steps a bit
	 easier.

This method of updating the FreeBSD documentation is
	supported by a set of documentation ports and packages which
	are updated by the Documentation Engineering Team <doceng@FreeBSD.org> on a monthly basis. These are
	listed in the FreeBSD Ports Collection, under the docs
	category (http://www.freshports.org/docs/).
Organization of the documentation ports is as
	follows:
	The misc/freebsd-doc-en package or
	 port installs all of the English documentation.

	The misc/freebsd-doc-all
	 meta-package or port installs all documentation in all
	 available languages.

	There is a package and port for each translation, such
	 as misc/freebsd-doc-hu for the
	 Hungarian documentation.

When binary packages are used, the FreeBSD documentation will
	be installed in all available formats for the given language.
	For example, the following command will install the latest
	package of the Hungarian documentation:
pkg install hu-freebsd-doc
Note:
Packages use a format that differs from the
	 corresponding port's name:
	 lang-freebsd-doc,
	 where lang is the short format of
	 the language code, such as hu for
	 Hungarian, or zh_cn for Simplified
	 Chinese.

To specify the format of the documentation, build the port
	instead of installing the package. For example, to build and
	install the English documentation:
cd /usr/ports/misc/freebsd-doc-en
make install clean
The port provides a configuration menu where the format to
	build and install can be specified. By default, split
	HTML, similar to the format used on http://www.FreeBSD.org,
	and PDF are selected.
Alternately, several make options can
	be specified when building a documentation port,
	including:
	WITH_HTML
	Builds the HTML format with a single HTML file per
	 document. The formatted documentation is saved to a
	 file called article.html, or
	 book.html.

	WITH_PDF
	The formatted documentation is saved to a file
	 called article.pdf or
	 book.pdf.

	DOCBASE
	Specifies where to install the documentation. It
	 defaults to
	 /usr/local/share/doc/freebsd.

This example uses variables to install the Hungarian
	documentation as a PDF in the specified
	directory:
cd /usr/ports/misc/freebsd-doc-hu
make -DWITH_PDF DOCBASE=share/doc/freebsd/hu install clean
Documentation packages or ports can be updated using the
	instructions in Chapter 4, Installing Applications: Packages and Ports. For example, the
	following command updates the installed Hungarian
	documentation using ports-mgmt/portmaster
	by using packages only:
portmaster -PP hu-freebsd-doc
A.4. Using rsync
These sites make FreeBSD available through the rsync
 protocol. The rsync utility
 transfers only the differences between two sets of files.
 This is useful for mirror sites of the FreeBSD
 FTP server. The
 rsync suite is available for many
 operating systems, on FreeBSD, see the net/rsync
 port or use the package.
	Czech Republic
	rsync://ftp.cz.FreeBSD.org/
Available collections:
	ftp: A partial mirror of the FreeBSD
		FTP server.

	FreeBSD: A full mirror of the FreeBSD
		FTP server.

	Netherlands
	rsync://ftp.nl.FreeBSD.org/
Available collections:
	FreeBSD: A full mirror of the FreeBSD
		FTP server.

	Russia
	rsync://ftp.mtu.ru/
Available collections:
	FreeBSD: A full mirror of the FreeBSD
		FTP server.

	FreeBSD-Archive: The mirror of FreeBSD Archive
		FTP server.

	Sweden
	rsync://ftp4.se.freebsd.org/
Available collections:
	FreeBSD: A full mirror of the FreeBSD
		FTP server.

	Taiwan
	rsync://ftp.tw.FreeBSD.org/
rsync://ftp2.tw.FreeBSD.org/
rsync://ftp6.tw.FreeBSD.org/
Available collections:
	FreeBSD: A full mirror of the FreeBSD
		FTP server.

	United Kingdom
	rsync://rsync.mirrorservice.org/
Available collections:
	ftp.freebsd.org: A full mirror of the FreeBSD
		FTP server.

	United States of America
	rsync://ftp-master.FreeBSD.org/
This server may only be used by FreeBSD primary mirror
	 sites.
Available collections:
	FreeBSD: The master archive of the FreeBSD
		FTP server.

	acl: The FreeBSD master ACL list.

rsync://ftp13.FreeBSD.org/
Available collections:
	FreeBSD: A full mirror of the FreeBSD
		FTP server.

B.7. Hardware Reference
	Anderson, Don and Tom Shanley. Pentium
	 Processor System Architecture. 2nd Ed.
	 Reading, Mass. : Addison-Wesley, 1995. ISBN
	 0-201-40992-5

	Ferraro, Richard F. Programmer's Guide to the
	 EGA, VGA, and Super VGA Cards. 3rd ed.
	 Reading, Mass. : Addison-Wesley, 1995. ISBN
	 0-201-62490-7

	Intel Corporation publishes documentation on their CPUs,
	 chipsets and standards on their
	 developer web
	 site, usually as PDF files.

	Shanley, Tom. 80486 System
	 Architecture. 3rd Ed. Reading, Mass. :
	 Addison-Wesley, 1995. ISBN 0-201-40994-1

	Shanley, Tom. ISA System
	 Architecture. 3rd Ed. Reading, Mass. :
	 Addison-Wesley, 1995. ISBN 0-201-40996-8

	Shanley, Tom. PCI System
	 Architecture. 4th Ed. Reading, Mass. :
	 Addison-Wesley, 1999. ISBN 0-201-30974-2

	Van Gilluwe, Frank. The Undocumented
	 PC, 2nd Ed. Reading, Mass: Addison-Wesley Pub.
	 Co., 1996. ISBN 0-201-47950-8

	Messmer, Hans-Peter. The Indispensable PC
	 Hardware Book, 4th Ed. Reading, Mass :
	 Addison-Wesley Pub. Co., 2002. ISBN 0-201-59616-4

3.7. Mounting and Unmounting File Systems
The file system is best visualized as a tree, rooted, as it
 were, at /.
 /dev,
 /usr, and the other
 directories in the root directory are branches, which may have
 their own branches, such as
 /usr/local, and so
 on.
There are various reasons to house some of these
 directories on separate file systems.
 /var contains the
 directories log/,
 spool/, and various types
 of temporary files, and as such, may get filled up. Filling up
 the root file system is not a good idea, so splitting
 /var from
 / is often
 favorable.
Another common reason to contain certain directory trees on
 other file systems is if they are to be housed on separate
 physical disks, or are separate virtual disks, such as Network
 File System mounts, described in Section 29.3, “Network File System (NFS)”,
 or CDROM drives.
3.7.1. The fstab File
During the boot process (Chapter 12, The FreeBSD Booting Process), file
	systems listed in /etc/fstab are
	automatically mounted except for the entries containing
	noauto. This file contains entries in the
	following format:
device /mount-point fstype options dumpfreq passno
	device
	An existing device name as explained in
	 Table 3.3, “Disk Device Names”.

	mount-point
	An existing directory on which to mount the file
	 system.

	fstype
	The file system type to pass to mount(8). The
	 default FreeBSD file system is
	 ufs.

	options
	Either rw for read-write file
	 systems, or ro for read-only file
	 systems, followed by any other options that may be
	 needed. A common option is noauto for
	 file systems not normally mounted during the boot
	 sequence. Other options are listed in
	 mount(8).

	dumpfreq
	Used by dump(8) to determine which file systems
	 require dumping. If the field is missing, a value of
	 zero is assumed.

	passno
	Determines the order in which file systems should be
	 checked. File systems that should be skipped should
	 have their passno set to zero. The
	 root file system needs to be checked before everything
	 else and should have its passno set
	 to one. The other file systems should be set to
	 values greater than one. If more than one file system
	 has the same passno, fsck(8)
	 will attempt to check file systems in parallel if
	 possible.

Refer to fstab(5) for more information on the format
	of /etc/fstab and its options.
3.7.2. Using mount(8)
File systems are mounted using mount(8). The most
	basic syntax is as follows:
mount device mountpoint

This command provides many options which are described in
	mount(8), The most commonly used options include:
Mount Options
	-a
	Mount all the file systems listed in
	 /etc/fstab, except those marked as
	 “noauto”, excluded by the
	 -t flag, or those that are already
	 mounted.

	-d
	Do everything except for the actual mount system
	 call. This option is useful in conjunction with the
	 -v flag to determine what mount(8)
	 is actually trying to do.

	-f
	Force the mount of an unclean file system
	 (dangerous), or the revocation of write access when
	 downgrading a file system's mount status from read-write
	 to read-only.

	-r
	Mount the file system read-only. This is identical
	 to using -o ro.

	-t
	 fstype
	Mount the specified file system type or mount only
	 file systems of the given type, if -a
	 is included. “ufs” is the default file
	 system type.

	-u
	Update mount options on the file system.

	-v
	Be verbose.

	-w
	Mount the file system read-write.

The following options can be passed to -o
	as a comma-separated list:
	nosuid
	Do not interpret setuid or setgid flags on the
	 file system. This is also a useful security
	 option.

3.7.3. Using umount(8)
To unmount a file system use umount(8). This command
	takes one parameter which can be a mountpoint, device name,
	-a or -A.
All forms take -f to force unmounting,
	and -v for verbosity. Be warned that
	-f is not generally a good idea as it might
	crash the computer or damage data on the file system.
To unmount all mounted file systems, or just the file
	system types listed after -t, use
	-a or -A. Note that
	-A does not attempt to unmount the root file
	system.
12.5. Shutdown Sequence
Upon controlled shutdown using shutdown(8),
 init(8) will attempt to run the script
 /etc/rc.shutdown, and then proceed to send
 all processes the TERM signal, and
 subsequently the KILL signal to any that do
 not terminate in a timely manner.
To power down a FreeBSD machine on architectures and systems
 that support power management, use

 shutdown -p now to turn the power off
 immediately. To reboot a FreeBSD system, use
 shutdown -r now. One must be
 root or a member of
 operator in order to
 run shutdown(8). One can also use halt(8) and
 reboot(8). Refer to their manual pages and to
 shutdown(8) for more information.
Modify group membership by referring to
 Section 3.3, “Users and Basic Account Management”.
Note:
Power management requires acpi(4) to be loaded as
	a module or statically compiled into a custom kernel.

13.9. Access Control Lists
Contributed
	 by Tom Rhodes. Access Control Lists (ACLs) extend the
 standard UNIX® permission model in a POSIX®.1e compatible way.
 This permits an administrator to take advantage of a more
 fine-grained permissions model.
The FreeBSD GENERIC kernel provides
 ACL support for UFS file
 systems. Users who prefer to compile a custom kernel must
 include the following option in their custom kernel
 configuration file:
options UFS_ACL
If this option is not compiled in, a warning message will be
 displayed when attempting to mount a file system with
 ACL support. ACLs rely on
 extended attributes which are natively supported in
 UFS2.
This chapter describes how to enable
 ACL support and provides some usage
 examples.
13.9.1. Enabling ACL Support
ACLs are enabled by the mount-time
	administrative flag, acls, which may be added
	to /etc/fstab. The mount-time flag can
	also be automatically set in a persistent manner using
	tunefs(8) to modify a superblock ACLs
	flag in the file system header. In general, it is preferred
	to use the superblock flag for several reasons:
	The superblock flag cannot be changed by a remount
	 using mount -u as it requires a complete
	 umount and fresh
	 mount. This means that
	 ACLs cannot be enabled on the root file
	 system after boot. It also means that
	 ACL support on a file system cannot be
	 changed while the system is in use.

	Setting the superblock flag causes the file system to
	 always be mounted with ACLs enabled,
	 even if there is not an fstab entry
	 or if the devices re-order. This prevents accidental
	 mounting of the file system without ACL
	 support.

Note:
It is desirable to discourage accidental mounting
	 without ACLs enabled because nasty things
	 can happen if ACLs are enabled, then
	 disabled, then re-enabled without flushing the extended
	 attributes. In general, once ACLs are
	 enabled on a file system, they should not be disabled, as
	 the resulting file protections may not be compatible with
	 those intended by the users of the system, and re-enabling
	 ACLs may re-attach the previous
	 ACLs to files that have since had their
	 permissions changed, resulting in unpredictable
	 behavior.

File systems with ACLs enabled will
	show a plus (+) sign in their permission
	settings:
drwx------ 2 robert robert 512 Dec 27 11:54 private
drwxrwx---+ 2 robert robert 512 Dec 23 10:57 directory1
drwxrwx---+ 2 robert robert 512 Dec 22 10:20 directory2
drwxrwx---+ 2 robert robert 512 Dec 27 11:57 directory3
drwxr-xr-x 2 robert robert 512 Nov 10 11:54 public_html
In this example, directory1,
	directory2, and
	directory3 are all taking advantage of
	ACLs, whereas
	public_html is not.
13.9.2. Using ACLs
File system ACLs can be viewed using
	getfacl. For instance, to view the
	ACL settings on
	test:
% getfacl test
	#file:test
	#owner:1001
	#group:1001
	user::rw-
	group::r--
	other::r--
To change the ACL settings on this
	file, use setfacl. To remove all of the
	currently defined ACLs from a file or file
	system, include -k. However, the preferred
	method is to use -b as it leaves the basic
	fields required for ACLs to work.
% setfacl -k test
To modify the default ACL entries, use
	-m:
% setfacl -m u:trhodes:rwx,group:web:r--,o::--- test
In this example, there were no pre-defined entries, as
	they were removed by the previous command. This command
	restores the default options and assigns the options listed.
	If a user or group is added which does not exist on the
	system, an Invalid argument error will
	be displayed.
Refer to getfacl(1) and setfacl(1) for more
	information about the options available for these
	commands.
30.4. IPFW
IPFW is a stateful firewall
 written for FreeBSD which supports both IPv4 and
 IPv6. It is comprised of several components:
 the kernel firewall filter rule processor and its integrated
 packet accounting facility, the logging facility,
 NAT, the dummynet(4) traffic shaper, a
 forward facility, a bridge facility, and an ipstealth
 facility.
FreeBSD provides a sample ruleset in
 /etc/rc.firewall which defines several
 firewall types for common scenarios to assist novice users in
 generating an appropriate ruleset.
 IPFW provides a powerful syntax which
 advanced users can use to craft customized rulesets that meet
 the security requirements of a given environment.
This section describes how to enable
 IPFW, provides an overview of its
 rule syntax, and demonstrates several rulesets for common
 configuration scenarios.
30.4.1. Enabling IPFW
IPFW is included in the basic
	FreeBSD install as a kernel loadable module, meaning that a
	custom kernel is not needed in order to enable
	IPFW.
For those users who wish to statically compile
	IPFW support into a custom kernel,
	see Section 30.4.6, “IPFW Kernel Options”.
To configure the system to enable
	IPFW at boot time, add
	firewall_enable="YES" to
	/etc/rc.conf:
sysrc firewall_enable="YES"
To use one of the default firewall types provided by FreeBSD,
	add another line which specifies the type:
sysrc firewall_type="open"
The available types are:
	open: passes all traffic.

	client: protects only this
	 machine.

	simple: protects the whole
	 network.

	closed: entirely disables IP
	 traffic except for the loopback interface.

	workstation: protects only this
	 machine using stateful rules.

	UNKNOWN: disables the loading of
	 firewall rules.

	filename:
	 full path of the file containing the firewall
	 ruleset.

If firewall_type is set to either
	client or simple,
	modify the default rules found in
	/etc/rc.firewall to fit the
	configuration of the system.
Note that the filename type is used to
	load a custom ruleset.
An alternate way to load a custom ruleset is to set the
	firewall_script variable to the absolute
	path of an executable script that
	includes IPFW commands. The
	examples used in this section assume that the
	firewall_script is set to
	/etc/ipfw.rules:
sysrc firewall_script="/etc/ipfw.rules"
To enable logging through syslogd(8), include this
	line:
sysrc firewall_logging="YES"
Warning:
Only firewall rules with the log option will
	 be logged. The default rules do not include this option and it
	 must be manually added. Therefore it is advisable that the default
	 ruleset is edited for logging. In addition, log rotation may be
	 desired if the logs are stored in a separate file.

There is no /etc/rc.conf variable to
	set logging limits. To limit the number of times a rule is
	logged per connection attempt, specify the number using this
	line in /etc/sysctl.conf:
echo "net.inet.ip.fw.verbose_limit=5" >> /etc/sysctl.conf
To enable logging through a dedicated interface named
	ipfw0, add this line to
	/etc/rc.conf instead:
sysrc firewall_logif="YES"
Then use tcpdump to see what is
	being logged:
tcpdump -t -n -i ipfw0
Tip:
There is no overhead due to logging unless
	 tcpdump is attached.

After saving the needed edits, start the firewall. To
	enable logging limits now, also set the
	sysctl value specified above:
service ipfw start
sysctl net.inet.ip.fw.verbose_limit=5
30.4.2. IPFW Rule Syntax
When a packet enters the IPFW
	firewall, it is compared against the first rule in the ruleset
	and progresses one rule at a time, moving from top to bottom
	in sequence. When the packet matches the selection parameters
	of a rule, the rule's action is executed and the search of the
	ruleset terminates for that packet. This is referred to as
	“first match wins”. If the packet does not match
	any of the rules, it gets caught by the mandatory
	IPFW default rule number 65535,
	which denies all packets and silently discards them. However,
	if the packet matches a rule that contains the
	count, skipto, or
	tee keywords, the search continues. Refer
	to ipfw(8) for details on how these keywords affect rule
	processing.
When creating an
	IPFW rule, keywords must be
	written in the following order. Some keywords are mandatory
	while other keywords are optional. The words shown in
	uppercase represent a variable and the words shown in
	lowercase must precede the variable that follows it. The
	# symbol is used to mark the start of a
	comment and may appear at the end of a rule or on its own
	line. Blank lines are ignored.
CMD RULE_NUMBER set SET_NUMBER ACTION log
	 LOG_AMOUNT PROTO from SRC SRC_PORT to DST DST_PORT
	 OPTIONS
This section provides an overview of these keywords and
	their options. It is not an exhaustive list of every possible
	option. Refer to ipfw(8) for a complete description of
	the rule syntax that can be used when creating
	IPFW rules.
	CMD
	Every rule must start with
	 ipfw add.

	RULE_NUMBER
	Each rule is associated with a number from
	 1 to
	 65534. The number is used to
	 indicate the order of rule processing. Multiple rules
	 can have the same number, in which case they are applied
	 according to the order in which they have been
	 added.

	SET_NUMBER
	Each rule is associated with a set number from
	 0 to 31.
	 Sets can be individually disabled or enabled, making it
	 possible to quickly add or delete a set of rules. If a
	 SET_NUMBER is not specified, the rule will be added to
	 set 0.

	ACTION
	A rule can be associated with one of the following
	 actions. The specified action will be executed when the
	 packet matches the selection criterion of the
	 rule.
allow | accept | pass |
		permit: these keywords are equivalent and
	 allow packets that match the rule.
check-state: checks the
	 packet against the dynamic state table. If a match is
	 found, execute the action associated with the rule which
	 generated this dynamic rule, otherwise move to the next
	 rule. A check-state rule does not
	 have selection criterion. If no
	 check-state rule is present in the
	 ruleset, the dynamic rules table is checked at the first
	 keep-state or
	 limit rule.
count: updates counters for
	 all packets that match the rule. The search continues
	 with the next rule.
deny | drop: either word
	 silently discards packets that match this rule.
Additional actions are available. Refer to
	 ipfw(8) for details.

	LOG_AMOUNT
	When a packet matches a rule with the
	 log keyword, a message will be logged
	 to syslogd(8) with a facility name of
	 SECURITY. Logging only occurs if the
	 number of packets logged for that particular rule does
	 not exceed a specified LOG_AMOUNT. If no
	 LOG_AMOUNT is specified, the limit is taken from the
	 value of
	 net.inet.ip.fw.verbose_limit. A
	 value of zero removes the logging limit. Once the limit
	 is reached, logging can be re-enabled by clearing the
	 logging counter or the packet counter for that rule,
	 using ipfw resetlog.
Note:
Logging is done after all other packet matching
		conditions have been met, and before performing the
		final action on the packet. The administrator decides
		which rules to enable logging on.

	PROTO
	This optional value can be used to specify any
	 protocol name or number found in
	 /etc/protocols.

	SRC
	The from keyword must be followed
	 by the source address or a keyword that represents the
	 source address. An address can be represented by
	 any, me (any
	 address configured on an interface on this system),
	 me6, (any IPv6
	 address configured on an interface on this system), or
	 table followed by the number of a
	 lookup table which contains a list of addresses. When
	 specifying an IP address, it can be
	 optionally followed by its CIDR mask
	 or subnet mask. For example,
	 1.2.3.4/25 or
	 1.2.3.4:255.255.255.128.

	SRC_PORT
	An optional source port can be specified using the
	 port number or name from
	 /etc/services.

	DST
	The to keyword must be followed
	 by the destination address or a keyword that represents
	 the destination address. The same keywords and
	 addresses described in the SRC section can be used to
	 describe the destination.

	DST_PORT
	An optional destination port can be specified using
	 the port number or name from
	 /etc/services.

	OPTIONS
	Several keywords can follow the source and
	 destination. As the name suggests, OPTIONS are
	 optional. Commonly used options include
	 in or out, which
	 specify the direction of packet flow,
	 icmptypes followed by the type of
	 ICMP message, and
	 keep-state.
When a keep-state rule is
	 matched, the firewall will create a dynamic rule which
	 matches bidirectional traffic between the source and
	 destination addresses and ports using the same
	 protocol.
The dynamic rules facility is vulnerable to resource
	 depletion from a SYN-flood attack which would open a
	 huge number of dynamic rules. To counter this type of
	 attack with IPFW, use
	 limit. This option limits the number
	 of simultaneous sessions by checking the open dynamic
	 rules, counting the number of times this rule and
	 IP address combination occurred. If
	 this count is greater than the value specified by
	 limit, the packet is
	 discarded.
Dozens of OPTIONS are available. Refer to
	 ipfw(8) for a description of each available
	 option.

30.4.3. Example Ruleset
This section demonstrates how to create an example
	stateful firewall ruleset script named
	/etc/ipfw.rules. In this example, all
	connection rules use in or
	out to clarify the direction. They also
	use via
	interface-name to specify
	the interface the packet is traveling over.
Note:
When first creating or testing a firewall ruleset,
	 consider temporarily setting this tunable:
net.inet.ip.fw.default_to_accept="1"
This sets the default policy of ipfw(8) to be more
	 permissive than the default deny ip from any to
	 any, making it slightly more difficult to get
	 locked out of the system right after a reboot.

The firewall script begins by indicating that it is a
	Bourne shell script and flushes any existing rules. It then
	creates the cmd variable so that
	ipfw add does not have to be typed at the
	beginning of every rule. It also defines the
	pif variable which represents the name of
	the interface that is attached to the Internet.
#!/bin/sh
Flush out the list before we begin.
ipfw -q -f flush

Set rules command prefix
cmd="ipfw -q add"
pif="dc0" # interface name of NIC attached to Internet
The first two rules allow all traffic on the trusted
	internal interface and on the loopback interface:
Change xl0 to LAN NIC interface name
$cmd 00005 allow all from any to any via xl0

No restrictions on Loopback Interface
$cmd 00010 allow all from any to any via lo0
The next rule allows the packet through if it matches an
	existing entry in the dynamic rules table:
$cmd 00101 check-state
The next set of rules defines which stateful connections
	internal systems can create to hosts on the Internet:
Allow access to public DNS
Replace x.x.x.x with the IP address of a public DNS server
and repeat for each DNS server in /etc/resolv.conf
$cmd 00110 allow tcp from any to x.x.x.x 53 out via $pif setup keep-state
$cmd 00111 allow udp from any to x.x.x.x 53 out via $pif keep-state

Allow access to ISP's DHCP server for cable/DSL configurations.
Use the first rule and check log for IP address.
Then, uncomment the second rule, input the IP address, and delete the first rule
$cmd 00120 allow log udp from any to any 67 out via $pif keep-state
#$cmd 00120 allow udp from any to x.x.x.x 67 out via $pif keep-state

Allow outbound HTTP and HTTPS connections
$cmd 00200 allow tcp from any to any 80 out via $pif setup keep-state
$cmd 00220 allow tcp from any to any 443 out via $pif setup keep-state

Allow outbound email connections
$cmd 00230 allow tcp from any to any 25 out via $pif setup keep-state
$cmd 00231 allow tcp from any to any 110 out via $pif setup keep-state

Allow outbound ping
$cmd 00250 allow icmp from any to any out via $pif keep-state

Allow outbound NTP
$cmd 00260 allow udp from any to any 123 out via $pif keep-state

Allow outbound SSH
$cmd 00280 allow tcp from any to any 22 out via $pif setup keep-state

deny and log all other outbound connections
$cmd 00299 deny log all from any to any out via $pif
The next set of rules controls connections from Internet
	hosts to the internal network. It starts by denying packets
	typically associated with attacks and then explicitly allows
	specific types of connections. All the authorized services
	that originate from the Internet use limit
	to prevent flooding.
Deny all inbound traffic from non-routable reserved address spaces
$cmd 00300 deny all from 192.168.0.0/16 to any in via $pif #RFC 1918 private IP
$cmd 00301 deny all from 172.16.0.0/12 to any in via $pif #RFC 1918 private IP
$cmd 00302 deny all from 10.0.0.0/8 to any in via $pif #RFC 1918 private IP
$cmd 00303 deny all from 127.0.0.0/8 to any in via $pif #loopback
$cmd 00304 deny all from 0.0.0.0/8 to any in via $pif #loopback
$cmd 00305 deny all from 169.254.0.0/16 to any in via $pif #DHCP auto-config
$cmd 00306 deny all from 192.0.2.0/24 to any in via $pif #reserved for docs
$cmd 00307 deny all from 204.152.64.0/23 to any in via $pif #Sun cluster interconnect
$cmd 00308 deny all from 224.0.0.0/3 to any in via $pif #Class D & E multicast

Deny public pings
$cmd 00310 deny icmp from any to any in via $pif

Deny ident
$cmd 00315 deny tcp from any to any 113 in via $pif

Deny all Netbios services.
$cmd 00320 deny tcp from any to any 137 in via $pif
$cmd 00321 deny tcp from any to any 138 in via $pif
$cmd 00322 deny tcp from any to any 139 in via $pif
$cmd 00323 deny tcp from any to any 81 in via $pif

Deny fragments
$cmd 00330 deny all from any to any frag in via $pif

Deny ACK packets that did not match the dynamic rule table
$cmd 00332 deny tcp from any to any established in via $pif

Allow traffic from ISP's DHCP server.
Replace x.x.x.x with the same IP address used in rule 00120.
#$cmd 00360 allow udp from any to x.x.x.x 67 in via $pif keep-state

Allow HTTP connections to internal web server
$cmd 00400 allow tcp from any to me 80 in via $pif setup limit src-addr 2

Allow inbound SSH connections
$cmd 00410 allow tcp from any to me 22 in via $pif setup limit src-addr 2

Reject and log all other incoming connections
$cmd 00499 deny log all from any to any in via $pif
The last rule logs all packets that do not match any of
	the rules in the ruleset:
Everything else is denied and logged
$cmd 00999 deny log all from any to any
30.4.4. In-kernel NAT
Contributed by Chern Lee. Rewritten and updated by Dries Michiels. FreeBSD's IPFW firewall has two
	implementations of NAT: the userland
	implementation natd(8), and the more recent in-kernel
	NAT implementation. Both work in
	conjunction with IPFW to provide
	network address translation. This can be used to provide an
	Internet Connection Sharing solution so that several internal
	computers can connect to the Internet using a single public
	IP address.
To do this, the FreeBSD machine connected to the Internet
	must act as a gateway. This system must have two
	NICs, where one is connected to the
	Internet and the other is connected to the internal
	LAN. Each machine connected to the
	LAN should be assigned an
	IP address in the private network space, as
	defined by RFC
	1918.
Some additional configuration is needed in order to enable
	the in-kernel NAT facility of
	IPFW. To enable in-kernel
	NAT support at boot time, the following
	must be set in /etc/rc.conf:
gateway_enable="YES"
firewall_enable="YES"
firewall_nat_enable="YES"
Note:
When firewall_nat_enable is set but
	 firewall_enable is not, it will have no
	 effect and do nothing. This is because the in-kernel
	 NAT implementation is only compatible
	 with IPFW.

When the ruleset contains stateful rules, the positioning
	of the NAT rule is critical and the
	skipto action is used. The
	skipto action requires a rule number so
	that it knows which rule to jump to. The example below builds
	upon the firewall ruleset shown in the previous section. It
	adds some additional entries and modifies some existing rules
	in order to configure the firewall for in-kernel
	NAT. It starts by adding some additional
	variables which represent the rule number to skip to, the
	keep-state option, and a list of
	TCP ports which will be used to reduce the
	number of rules.
#!/bin/sh
ipfw -q -f flush
cmd="ipfw -q add"
skip="skipto 1000"
pif=dc0
ks="keep-state"
good_tcpo="22,25,37,53,80,443,110"
With in-kernel NAT it is
	necessary to disable TCP segmentation offloading
	(TSO) due to the architecture of
	libalias(3), a library implemented as a kernel module to
	provide the in-kernel NAT facility of
	IPFW. TSO can
	be disabled on a per network interface basis using
	ifconfig(8) or on a system wide basis using
	sysctl(8). To disable TSO system
	wide, the following must be set it
	/etc/sysctl.conf:
net.inet.tcp.tso="0"
A NAT instance will also be configured.
	It is possible to have multiple NAT
	instances each with their own configuration. For this example
	only one NAT instance is needed,
	NAT instance number 1. The configuration
	can take a few options such as: if which
	indicates the public interface, same_ports
	which takes care that alliased ports and local port numbers
	are mapped the same, unreg_only will result
	in only unregistered (private) address spaces to be processed
	by the NAT instance, and
	reset which will help to keep a functioning
	NAT instance even when the public
	IP address of the
	IPFW machine changes. For all
	possible options that can be passed to a single
	NAT instance configuration consult
	ipfw(8). When configuring a stateful
	NATing firewall, it is neseccary to allow
	translated packets to be reinjected in the firewall for
	further processing. This can be achieved by disabling
	one_pass behavior at the start of the
	firewall script.
ipfw disable one_pass
ipfw -q nat 1 config if $pif same_ports unreg_only reset
The inbound NAT rule is inserted
	after the two rules which allow all
	traffic on the trusted and loopback interfaces and after the
	reassemble rule but before the
	check-state rule. It is important that the
	rule number selected for this NAT rule, in
	this example 100, is higher than the first
	three rules and lower than the check-state
	rule. Furthermore, because of the behavior of in-kernel
	NAT it is advised to place a reassemble
	rule just before the first NAT rule and
	after the rules that allow traffic on trusted interface.
	Normally, IP fragmentation should not
	happen, but when dealing with IPSEC/ESP/GRE
	tunneling traffic it might and the reassembling of fragments
	is necessary before handing the complete packet over to the
	in-kernel NAT facility.
Note:
The reassemble rule was not needed with userland
	 natd(8) because the internal workings of the
	 IPFW divert
	 action already takes care of reassembling packets before
	 delivery to the socket as also stated in ipfw(8).
The NAT instance and rule number used
	 in this example does not match with the default
	 NAT instance and rule number created by
	 rc.firewall.
	 rc.firewall is a script that sets up
	 the default firewall rules present in FreeBSD.

$cmd 005 allow all from any to any via xl0 # exclude LAN traffic
$cmd 010 allow all from any to any via lo0 # exclude loopback traffic
$cmd 099 reass all from any to any in # reassemble inbound packets
$cmd 100 nat 1 ip from any to any in via $pif # NAT any inbound packets
Allow the packet through if it has an existing entry in the dynamic rules table
$cmd 101 check-state
The outbound rules are modified to replace the
	allow action with the
	$skip variable, indicating that rule
	processing will continue at rule 1000. The
	seven tcp rules have been replaced by rule
	125 as the
	$good_tcpo variable contains the
	seven allowed outbound ports.
Note:
Remember that IPFW's
	 performance is largely determined by the number of rules
	 present in the ruleset.

Authorized outbound packets
$cmd 120 $skip udp from any to x.x.x.x 53 out via $pif $ks
$cmd 121 $skip udp from any to x.x.x.x 67 out via $pif $ks
$cmd 125 $skip tcp from any to any $good_tcpo out via $pif setup $ks
$cmd 130 $skip icmp from any to any out via $pif $ks
The inbound rules remain the same, except for the very
	last rule which removes the via $pif in
	order to catch both inbound and outbound rules. The
	NAT rule must follow this last outbound
	rule, must have a higher number than that last rule, and the
	rule number must be referenced by the
	skipto action. In this ruleset, rule
	number 1000 handles passing all packets to
	our configured instance for NAT processing.
	The next rule allows any packet which has undergone
	NAT processing to pass.
$cmd 999 deny log all from any to any
$cmd 1000 nat 1 ip from any to any out via $pif # skipto location for outbound stateful rules
$cmd 1001 allow ip from any to any
In this example, rules 100,
	101, 125,
	1000, and 1001 control
	the address translation of the outbound and inbound packets so
	that the entries in the dynamic state table always register
	the private LAN IP
	address.
Consider an internal web browser which initializes a new
	outbound HTTP session over port 80. When
	the first outbound packet enters the firewall, it does not
	match rule 100 because it is headed out
	rather than in. It passes rule 101 because
	this is the first packet and it has not been posted to the
	dynamic state table yet. The packet finally matches rule
	125 as it is outbound on an allowed port
	and has a source IP address from the
	internal LAN. On matching this rule, two
	actions take place. First, the keep-state
	action adds an entry to the dynamic state table and the
	specified action, skipto rule 1000, is
	executed. Next, the packet undergoes NAT
	and is sent out to the Internet. This packet makes its way to
	the destination web server, where a response packet is
	generated and sent back. This new packet enters the top of
	the ruleset. It matches rule 100 and has
	its destination IP address mapped back to
	the original internal address. It then is processed by the
	check-state rule, is found in the table as
	an existing session, and is released to the
	LAN.
On the inbound side, the ruleset has to deny bad packets
	and allow only authorized services. A packet which matches an
	inbound rule is posted to the dynamic state table and the
	packet is released to the LAN. The packet
	generated as a response is recognized by the
	check-state rule as belonging to an
	existing session. It is then sent to rule
	1000 to undergo
	NAT before being released to the outbound
	interface.
Note:
Transitioning from userland natd(8) to in-kernel
	 NAT might seem seamless at first but
	 there is small catch. When using the GENERIC kernel,
	 IPFW will load the
	 libalias.ko kernel module, when
	 firewall_nat_enable is enabled in
	 rc.conf. The
	 libalias.ko kernel module only provides
	 basic NAT functionality, whereas the
	 userland implementation natd(8) has all
	 NAT functionality available in its
	 userland library without any extra configuration. All
	 functionality refers to the following kernel modules that
	 can additionally be loaded when needed besides the standard
	 libalias.ko kernel module:
	 alias_cuseeme.ko,
	 alias_ftp.ko,
	 alias_bbt.ko,
	 skinny.ko, irc.ko,
	 alias_pptp.ko and
	 alias_smedia.ko using the
	 kld_list directive in
	 rc.conf. If a custom kernel is used,
	 the full functionality of the userland library can be
	 compiled in, in the kernel, using the options
	 LIBALIAS.

30.4.4.1. Port Redirection
The drawback with NAT in general is
	 that the LAN clients are not accessible
	 from the Internet. Clients on the LAN
	 can make outgoing connections to the world but cannot
	 receive incoming ones. This presents a problem if trying to
	 run Internet services on one of the LAN
	 client machines. A simple way around this is to redirect
	 selected Internet ports on the NAT
	 providing machine to a LAN client.
For example, an IRC server runs on
	 client A and a web server runs on
	 client B. For this to work
	 properly, connections received on ports 6667
	 (IRC) and 80 (HTTP)
	 must be redirected to the respective machines.
With in-kernel NAT all configuration
	 is done in the NAT instance
	 configuration. For a full list of options that an in-kernel
	 NAT instance can use, consult
	 ipfw(8). The IPFW syntax
	 follows the syntax of natd. The
	 syntax for redirect_port is as
	 follows:
redirect_port proto targetIP:targetPORT[-targetPORT]
 [aliasIP:]aliasPORT[-aliasPORT]
 [remoteIP[:remotePORT[-remotePORT]]]
To configure the above example setup, the arguments
	should be:
redirect_port tcp 192.168.0.2:6667 6667
redirect_port tcp 192.168.0.3:80 80
After adding these arguments to the configuration of
	 NAT instance 1 in the above ruleset, the
	 TCP ports will be port forwarded to the
	 LAN client machines running the
	 IRC and HTTP
	 services.
ipfw -q nat 1 config if $pif same_ports unreg_only reset \
 redirect_port tcp 192.168.0.2:6667 6667 \
 redirect_port tcp 192.168.0.3:80 80
Port ranges over individual ports can be indicated with
	 redirect_port. For example,
	 tcp 192.168.0.2:2000-3000
	 2000-3000 would redirect all connections
	 received on ports 2000 to 3000 to ports 2000 to 3000 on
	 client A.
30.4.4.2. Address Redirection
Address redirection is useful if more than one
	 IP address is available. Each
	 LAN client can be assigned its own
	 external IP address by ipfw(8),
	 which will then rewrite outgoing packets from the
	 LAN clients with the proper external
	 IP address and redirects all traffic
	 incoming on that particular IP address
	 back to the specific LAN client. This is
	 also known as static NAT. For example,
	 if IP addresses 128.1.1.1, 128.1.1.2, and 128.1.1.3 are available,
	 128.1.1.1 can be
	 used as the ipfw(8) machine's external
	 IP address, while 128.1.1.2 and 128.1.1.3 are forwarded
	 back to LAN clients
	 A and
	 B.
The redirect_address syntax is as
	 below, where localIP is the internal
	 IP address of the LAN
	 client, and publicIP the external
	 IP address corresponding to the
	 LAN client.
redirect_address localIP publicIP
In the example, the arguments would read:
redirect_address 192.168.0.2 128.1.1.2
redirect_address 192.168.0.3 128.1.1.3
Like redirect_port, these arguments
	 are placed in a NAT instance
	 configuration. With address redirection, there is no
	 need for port redirection, as all data received on a
	 particular IP address is
	 redirected.
The external IP addresses on the
	 ipfw(8) machine must be active and aliased to the
	 external interface. Refer to rc.conf(5) for
	 details.
30.4.4.3. Userspace NAT
Let us start with a statement: the userspace
	 NAT implementation: natd(8), has
	 more overhead than in-kernel NAT. For
	 natd(8) to translate packets, the packets have to be
	 copied from the kernel to userspace and back which brings in
	 extra overhead that is not present with in-kernel
	 NAT.
To enable the userpace NAT daemon
	 natd(8) at boot time, the following is a minimum
	 configuration in /etc/rc.conf. Where
	 natd_interface is set to the name of the
	 NIC attached to the Internet. The
	 rc(8) script of natd(8) will automatically check
	 if a dynamic IP address is used and
	 configure itself to handle that.
gateway_enable="YES"
natd_enable="YES"
natd_interface="rl0"
In general, the above ruleset as explained for in-kernel
	 NAT can also be used together with
	 natd(8). The exceptions are the configuration of the
	 in-kernel NAT instance (ipfw -q
	 nat 1 config ...) which is not needed together
	 with reassemble rule 99 because its functionality is
	 included in the divert action. Rule number
	 100 and 1000 will have to change sligthly as shown
	 below.
$cmd 100 divert natd ip from any to any in via $pif
$cmd 1000 divert natd ip from any to any out via $pif
To configure port or address redirection, a similar
	 syntax as with in-kernel NAT is used.
	 Although, now, instead of specifying the configuration in
	 our ruleset script like with in-kernel
	 NAT, configuration of natd(8) is
	 best done in a configuration file. To do this, an extra
	 flag must be passed via /etc/rc.conf
	 which specifies the path of the configuration file.
natd_flags="-f /etc/natd.conf"
Note:
The specified file must contain a list of
	 configuration options, one per line. For more information
	 about the configuration file and possible variables,
	 consult natd(8). Below are two example
	 entries, one per line:
redirect_port tcp 192.168.0.2:6667 6667
redirect_address 192.168.0.3 128.1.1.3

30.4.5. The IPFW Command
ipfw can be used to make manual,
	single rule additions or deletions to the active firewall
	while it is running. The problem with using this method is
	that all the changes are lost when the system reboots. It is
	recommended to instead write all the rules in a file and to
	use that file to load the rules at boot time and to replace
	the currently running firewall rules whenever that file
	changes.
ipfw is a useful way to display the
	running firewall rules to the console screen. The
	IPFW accounting facility
	dynamically creates a counter for each rule that counts each
	packet that matches the rule. During the process of testing a
	rule, listing the rule with its counter is one way to
	determine if the rule is functioning as expected.
To list all the running rules in sequence:
ipfw list
To list all the running rules with a time stamp of when
	the last time the rule was matched:
ipfw -t list
The next example lists accounting information and the
	packet count for matched rules along with the rules
	themselves. The first column is the rule number, followed by
	the number of matched packets and bytes, followed by the rule
	itself.
ipfw -a list
To list dynamic rules in addition to static rules:
ipfw -d list
To also show the expired dynamic rules:
ipfw -d -e list
To zero the counters:
ipfw zero
To zero the counters for just the rule with number
	NUM:
ipfw zero NUM
30.4.5.1. Logging Firewall Messages
Even with the logging facility enabled,
	 IPFW will not generate any rule
	 logging on its own. The firewall administrator decides
	 which rules in the ruleset will be logged, and adds the
	 log keyword to those rules. Normally
	 only deny rules are logged. It is customary to duplicate
	 the “ipfw default deny everything” rule with
	 the log keyword included as the last rule
	 in the ruleset. This way, it is possible to see all the
	 packets that did not match any of the rules in the
	 ruleset.
Logging is a two edged sword. If one is not careful,
	 an over abundance of log data or a DoS attack can fill the
	 disk with log files. Log messages are not only written to
	 syslogd, but also are displayed
	 on the root console screen and soon become annoying.
The IPFIREWALL_VERBOSE_LIMIT=5
	 kernel option limits the number of consecutive messages
	 sent to syslogd(8), concerning the packet matching of a
	 given rule. When this option is enabled in the kernel, the
	 number of consecutive messages concerning a particular rule
	 is capped at the number specified. There is nothing to be
	 gained from 200 identical log messages. With this option
	 set to five,
	 five consecutive messages concerning a particular rule
	 would be logged to syslogd and
	 the remainder identical consecutive messages would be
	 counted and posted to syslogd
	 with a phrase like the following:
last message repeated 45 times
All logged packets messages are written by default to
	 /var/log/security, which is
	 defined in /etc/syslog.conf.
30.4.5.2. Building a Rule Script
Most experienced IPFW users
	 create a file containing the rules and code them in a manner
	 compatible with running them as a script. The major benefit
	 of doing this is the firewall rules can be refreshed in mass
	 without the need of rebooting the system to activate them.
	 This method is convenient in testing new rules as the
	 procedure can be executed as many times as needed. Being a
	 script, symbolic substitution can be used for frequently
	 used values to be substituted into multiple rules.
This example script is compatible with the syntax used
	 by the sh(1), csh(1), and tcsh(1) shells.
	 Symbolic substitution fields are prefixed with a dollar sign
	 ($). Symbolic fields do not have the $
	 prefix. The value to populate the symbolic field must be
	 enclosed in double quotes ("").
Start the rules file like this:
############### start of example ipfw rules script #############
#
ipfw -q -f flush # Delete all rules
Set defaults
oif="tun0" # out interface
odns="192.0.2.11" # ISP's DNS server IP address
cmd="ipfw -q add " # build rule prefix
ks="keep-state" # just too lazy to key this each time
$cmd 00500 check-state
$cmd 00502 deny all from any to any frag
$cmd 00501 deny tcp from any to any established
$cmd 00600 allow tcp from any to any 80 out via $oif setup $ks
$cmd 00610 allow tcp from any to $odns 53 out via $oif setup $ks
$cmd 00611 allow udp from any to $odns 53 out via $oif $ks
################### End of example ipfw rules script ############
The rules are not important as the focus of this example
	 is how the symbolic substitution fields are
	 populated.
If the above example was in
	 /etc/ipfw.rules, the rules could be
	 reloaded by the following command:
sh /etc/ipfw.rules
/etc/ipfw.rules can be located
	 anywhere and the file can have any name.
The same thing could be accomplished by running these
	 commands by hand:
ipfw -q -f flush
ipfw -q add check-state
ipfw -q add deny all from any to any frag
ipfw -q add deny tcp from any to any established
ipfw -q add allow tcp from any to any 80 out via tun0 setup keep-state
ipfw -q add allow tcp from any to 192.0.2.11 53 out via tun0 setup keep-state
ipfw -q add 00611 allow udp from any to 192.0.2.11 53 out via tun0 keep-state
30.4.6. IPFW Kernel Options
In order to statically compile
	IPFW support into a custom kernel,
	refer to the instructions in Chapter 8, Configuring the FreeBSD Kernel.
	The following options are available for the
	custom kernel configuration file:
options IPFIREWALL			# enables IPFW
options IPFIREWALL_VERBOSE		# enables logging for rules with log keyword to syslogd(8)
options IPFIREWALL_VERBOSE_LIMIT=5	# limits number of logged packets per-entry
options IPFIREWALL_DEFAULT_TO_ACCEPT # sets default policy to pass what is not explicitly denied
options IPFIREWALL_NAT		# enables basic in-kernel NAT support
options LIBALIAS			# enables full in-kernel NAT support
options IPFIREWALL_NAT64		# enables in-kernel NAT64 support
options IPFIREWALL_NPTV6		# enables in-kernel IPv6 NPT support
options IPFIREWALL_PMOD		# enables protocols modification module support
options IPDIVERT			# enables NAT through natd(8)
Note:
IPFW can be loaded as
	 a kernel module: options above are built by default
	 as modules or can be set at runtime using tunables.

A.3. Using Subversion
A.3.1. Introduction
As of July 2012, FreeBSD uses
	Subversion as the only version
	control system for storing all of FreeBSD's source code,
	documentation, and the Ports Collection.
Note:
Subversion is generally a
	 developer tool. Users may prefer to use
	 freebsd-update (Section 23.2, “FreeBSD Update”) to update
	 the FreeBSD base system, and portsnap (Section 4.5, “Using the Ports Collection”) to update the FreeBSD Ports
	 Collection.

This section demonstrates how to install
	Subversion on a FreeBSD system and
	use it to create a local copy of a FreeBSD repository.
	Additional information on the use of
	Subversion is included.
A.3.2. Root SSL Certificates
Installing
	security/ca_root_nss allows
	Subversion to verify the identity
	of HTTPS repository servers. The root
	SSL certificates can be installed from a
	port:
cd /usr/ports/security/ca_root_nss
make install clean
or as a package:
pkg install ca_root_nss
A.3.3. Svnlite
A lightweight version of
	Subversion is already installed
	on FreeBSD as svnlite. The port or package
	version of Subversion is only
	needed if the Python or Perl API is needed,
	or if a later version of Subversion is desired.
The only difference from normal
	Subversion use is that the command
	name is svnlite.
A.3.4. Installation
If svnlite is unavailable or the full
	version of Subversion is needed,
	then it must be installed.
Subversion can be installed
	from the Ports Collection:
cd /usr/ports/devel/subversion
make install clean
Subversion can also be
	installed as a package:
pkg install subversion
A.3.5. Running Subversion
To fetch a clean copy of the sources into a local
	directory, use svn. The files in this
	directory are called a local working
	 copy.
Warning:
Move or delete an existing destination directory before
	 using checkout for the first time.
Checkout over an existing
	 non-svn directory can cause conflicts
	 between the existing files and those brought in from the
	 repository.

Subversion uses
	URLs to designate a repository, taking the
	form of protocol://hostname/path.
	The first component of the path is the FreeBSD repository to
	access. There are three different repositories,
	base for the FreeBSD base system source code,
	ports for the Ports Collection, and
	doc for documentation. For example, the
	URL
	https://svn.FreeBSD.org/ports/head/
	specifies the main branch of the ports repository,
	using the https protocol.
A checkout from a given repository is performed with a
	command like this:
svn checkout https://svn.FreeBSD.org/repository/branch lwcdir
where:
	repository is one of the
	 Project repositories: base,
	 ports, or
	 doc.

	branch depends on the
	 repository used. ports and
	 doc are mostly updated in the
	 head branch, while
	 base maintains the latest version of
	 -CURRENT under head and the respective
	 latest versions of the -STABLE branches under
	 stable/9
	 (9.x) and
	 stable/10
	 (10.x).

	lwcdir is the target
	 directory where the contents of the specified branch
	 should be placed. This is usually
	 /usr/ports for
	 ports,
	 /usr/src for
	 base, and
	 /usr/doc for
	 doc.

This example checks out the Ports Collection from the
	FreeBSD repository using the HTTPS
	protocol, placing the local working copy in
	/usr/ports. If
	/usr/ports is already
	present but was not created by svn,
	remember to rename or delete it before the checkout.
svn checkout https://svn.FreeBSD.org/ports/head /usr/ports
Because the initial checkout must download the full
	branch of the remote repository, it can take a while. Please
	be patient.
After the initial checkout, the local working copy can be
	updated by running:
svn update lwcdir
To update
	/usr/ports created in
	the example above, use:
svn update /usr/ports
The update is much quicker than a checkout, only
	transferring files that have changed.
An alternate way of updating the local working copy after
	checkout is provided by the Makefile in
	the /usr/ports,
	/usr/src, and
	/usr/doc directories.
	Set SVN_UPDATE and use the
	update target. For example, to
	update /usr/src:
cd /usr/src
make update SVN_UPDATE=yes
A.3.6. Subversion Mirror
	Sites
The FreeBSD Subversion
	repository is:
svn.FreeBSD.org
This is
	a publicly accessible mirror network that uses GeoDNS to
	select an appropriate back end server. To view the FreeBSD
	Subversion repositories through a
	browser, use https://svnweb.FreeBSD.org/.
HTTPS is the preferred protocol, but the
	security/ca_root_nss
	package will need to be installed in order to automatically
	validate certificates.
A.3.7. For More Information
For other information about using
	Subversion, please see the
	“Subversion Book”, titled
	Version
	 Control with Subversion, or the Subversion
	 Documentation.
3.10. Text Editors
Most FreeBSD configuration is done by editing text files.
 Because of this, it is a good idea to become familiar with a
 text editor. FreeBSD comes with a few as part of the base system,
 and many more are available in the Ports Collection.
A simple editor to learn is ee(1), which stands for
 easy editor. To start this editor, type ee
	filename where
 filename is the name of the file to
 be edited. Once inside the editor, all of the commands for
 manipulating the editor's functions are listed at the top of the
 display. The caret (^) represents
 Ctrl, so ^e expands to
 Ctrl+e. To leave ee(1), press Esc,
 then choose the “leave editor” option from the main
 menu. The editor will prompt to save any changes if the file
 has been modified.
FreeBSD also comes with more powerful text editors, such as
 vi(1), as part of the base system. Other editors, like
 editors/emacs and
 editors/vim, are part of the
 FreeBSD Ports Collection. These editors offer more functionality
 at the expense of being more complicated to learn. Learning a
 more powerful editor such as vim or
 Emacs can save more time in the long
 run.
Many applications which modify files or require typed input
 will automatically open a text editor. To change the default
 editor, set the EDITOR environment
 variable as described in Section 3.9, “Shells”.
4.6. Building Packages with
 Poudriere
Poudriere is a
 BSD-licensed utility for creating and testing
 FreeBSD packages. It uses FreeBSD jails to set up isolated
 compilation environments. These jails can be used to build
 packages for versions of FreeBSD that are different from the system
 on which it is installed, and also to build packages for i386 if
 the host is an amd64 system. Once the packages are
 built, they are in a layout identical to the official mirrors.
 These packages are usable by pkg(8) and other package
 management tools.
Poudriere is installed using
 the ports-mgmt/poudriere package
 or port. The installation includes a sample configuration
 file /usr/local/etc/poudriere.conf.sample.
 Copy this file to
 /usr/local/etc/poudriere.conf. Edit the
 copied file to suit the local configuration.
While ZFS is not required on the system
 running poudriere, it is beneficial.
 When ZFS is used,
 ZPOOL must be specified in
 /usr/local/etc/poudriere.conf and
 FREEBSD_HOST should be set to a nearby
 mirror. Defining CCACHE_DIR enables the use
 of devel/ccache to cache
 compilation and reduce build times for frequently-compiled code.
 It may be convenient to put
 poudriere datasets in an isolated
 tree mounted at /poudriere. Defaults for the
 other configuration values are adequate.
The number of processor cores detected is used to define how
 many builds will run in parallel. Supply enough virtual memory,
 either with RAM or swap space. If virtual
 memory runs out, the compilation jails will stop and be torn
 down, resulting in weird error messages.
4.6.1. Initialize Jails and Port Trees
After configuration, initialize
	poudriere so that it installs a
	jail with the required FreeBSD tree and a ports tree. Specify a
	name for the jail using -j and the FreeBSD
	version with -v. On systems running
	FreeBSD/amd64, the architecture can be set with
	-a to either i386 or
	amd64. The default is the
	architecture shown by uname.
poudriere jail -c -j 11amd64 -v 11.4-RELEASE
[00:00:00] Creating 11amd64 fs at /poudriere/jails/11amd64... done
[00:00:00] Using pre-distributed MANIFEST for FreeBSD 11.4-RELEASE amd64
[00:00:00] Fetching base for FreeBSD 11.4-RELEASE amd64
/poudriere/jails/11amd64/fromftp/base.txz 125 MB 4110 kBps 31s
[00:00:33] Extracting base... done
[00:00:54] Fetching src for FreeBSD 11.4-RELEASE amd64
/poudriere/jails/11amd64/fromftp/src.txz 154 MB 4178 kBps 38s
[00:01:33] Extracting src... done
[00:02:31] Fetching lib32 for FreeBSD 11.4-RELEASE amd64
/poudriere/jails/11amd64/fromftp/lib32.txz 24 MB 3969 kBps 06s
[00:02:38] Extracting lib32... done
[00:02:42] Cleaning up... done
[00:02:42] Recording filesystem state for clean... done
[00:02:42] Upgrading using ftp
/etc/resolv.conf -> /poudriere/jails/11amd64/etc/resolv.conf
Looking up update.FreeBSD.org mirrors... 3 mirrors found.
Fetching public key from update4.freebsd.org... done.
Fetching metadata signature for 11.4-RELEASE from update4.freebsd.org... done.
Fetching metadata index... done.
Fetching 2 metadata files... done.
Inspecting system... done.
Preparing to download files... done.
Fetching 124 patches.....10....20....30....40....50....60....70....80....90....100....110....120.. done.
Applying patches... done.
Fetching 6 files... done.
The following files will be added as part of updating to
11.4-RELEASE-p1:
/usr/src/contrib/unbound/.github
/usr/src/contrib/unbound/.github/FUNDING.yml
/usr/src/contrib/unbound/contrib/drop2rpz
/usr/src/contrib/unbound/contrib/unbound_portable.service.in
/usr/src/contrib/unbound/services/rpz.c
/usr/src/contrib/unbound/services/rpz.h
/usr/src/lib/libc/tests/gen/spawnp_enoexec.sh
The following files will be updated as part of updating to
11.4-RELEASE-p1:
[…]
Installing updates...Scanning //usr/share/certs/blacklisted for certificates...
Scanning //usr/share/certs/trusted for certificates...
 done.
11.4-RELEASE-p1
[00:04:06] Recording filesystem state for clean... done
[00:04:07] Jail 11amd64 11.4-RELEASE-p1 amd64 is ready to be used
poudriere ports -c -p local -m svn+https
[00:00:00] Creating local fs at /poudriere/ports/local... done
[00:00:00] Checking out the ports tree... done
On a single computer, poudriere
	can build ports with multiple configurations, in multiple
	jails, and from different port trees. Custom configurations
	for these combinations are called sets.
	See the CUSTOMIZATION section of poudriere(8) for details
	after ports-mgmt/poudriere or
	ports-mgmt/poudriere-devel is
	installed.
The basic configuration shown here puts a single jail-,
	port-, and set-specific make.conf in
	/usr/local/etc/poudriere.d.
	The filename in this example is created by combining the jail
	name, port name, and set name:
	11amd64-local-workstation-make.conf.
	The system make.conf and this new file
	are combined at build time to create the
	make.conf used by the build jail.
Packages to be built are entered in
	11amd64-local-workstation-pkglist:
editors/emacs
devel/git
ports-mgmt/pkg
...
Options and dependencies for the specified ports are
	configured:
poudriere options -j 11amd64 -p local -z workstation -f 11amd64-local-workstation-pkglist
Finally, packages are built and a package
	repository is created:
poudriere bulk -j 11amd64 -p local -z workstation -f 11amd64-local-workstation-pkglist
While running, pressing Ctrl+t
	displays the current state of the build.
	Poudriere also builds files in
	/poudriere/logs/bulk/jailname
	that can be used with a web server to display build
	information.
After completion, the new packages are now available for
	installation from the poudriere
	repository.
For more information on using
	poudriere, see poudriere(8)
	and the main web site, https://github.com/freebsd/poudriere/wiki.
4.6.2. Configuring pkg Clients to Use a Poudriere
	Repository
While it is possible to use both a custom repository along
	side of the official repository, sometimes it is useful to
	disable the official repository. This is done by creating a
	configuration file that overrides and disables the official
	configuration file. Create
	/usr/local/etc/pkg/repos/FreeBSD.conf
	that contains the following:
FreeBSD: {
	enabled: no
}
Usually it is easiest to serve a poudriere repository to
	the client machines via HTTP. Set up a webserver to serve up
	the package directory, for instance:
	/usr/local/poudriere/data/packages/11amd64,
	where 11amd64
	is the name of the build.
If the URL to the package repository is:
	http://pkg.example.com/11amd64, then the
	repository configuration file in
	/usr/local/etc/pkg/repos/custom.conf
	would look like:
custom: {
	url: "http://pkg.example.com/11amd64",
	enabled: yes,
}
17.2. Adding Disks
Originally contributed by David O'Brien. This section describes how to add a new
 SATA disk to a machine that currently only
 has a single drive. First, turn off the computer and install
 the drive in the computer following the instructions of the
 computer, controller, and drive manufacturers. Reboot the
 system and become
 root.
Inspect /var/run/dmesg.boot to ensure
 the new disk was found. In this example, the newly added
 SATA drive will appear as
 ada1.
For this example, a single large partition will be created
 on the new disk. The
	GPT partitioning scheme will be
 used in preference to the older and less versatile
 MBR scheme.
Note:
If the disk to be added is not blank, old partition
	information can be removed with
	gpart delete. See gpart(8) for
	details.

The partition scheme is created, and then a single partition
 is added. To improve performance on newer disks with larger
 hardware block sizes, the partition is aligned to one megabyte
 boundaries:
gpart create -s GPT ada1
gpart add -t freebsd-ufs -a 1M ada1
Depending on use, several smaller partitions may be desired.
 See gpart(8) for options to create partitions smaller than
 a whole disk.
The disk partition information can be viewed with
 gpart show:
% gpart show ada1
=> 34 1465146988 ada1 GPT (699G)
 34 2014 - free - (1.0M)
 2048 1465143296 1 freebsd-ufs (699G)
 1465145344 1678 - free - (839K)
A file system is created in the new partition on the new disk:
newfs -U /dev/ada1p1
An empty directory is created as a
 mountpoint, a location for mounting the new
 disk in the original disk's file system:
mkdir /newdisk
Finally, an entry is added to
 /etc/fstab so the new disk will be mounted
 automatically at startup:
/dev/ada1p1	/newdisk	ufs	rw	2	2
The new disk can be mounted manually, without restarting the
 system:
mount /newdisk
17.5. Creating and Using CD Media
Contributed by Mike Meyer. Compact Disc (CD) media provide a number
 of features that differentiate them from conventional disks.
 They are designed so that they can be read continuously without
 delays to move the head between tracks. While
 CD media do have tracks, these refer to a
 section of data to be read continuously, and not a physical
 property of the disk. The ISO 9660 file
 system was designed to deal with these differences.
The FreeBSD Ports Collection provides several utilities for
 burning and duplicating audio and data CDs.
 This chapter demonstrates the use of several command line
 utilities. For CD burning software with a
 graphical utility, consider installing the
 sysutils/xcdroast or
 sysutils/k3b packages or ports.
17.5.1. Supported Devices
Contributed by Marc Fonvieille. The GENERIC kernel provides support
	for SCSI, USB, and
	ATAPI CD readers and
	burners. If a custom kernel is used, the options that need to
	be present in the kernel configuration file vary by the type
	of device.
For a SCSI burner, make sure these
	options are present:
device scbus	# SCSI bus (required for ATA/SCSI)
device da	# Direct Access (disks)
device pass	# Passthrough device (direct ATA/SCSI access)
device cd	# needed for CD and DVD burners
For a USB burner, make sure these
	options are present:
device scbus	# SCSI bus (required for ATA/SCSI)
device da	# Direct Access (disks)
device pass	# Passthrough device (direct ATA/SCSI access)
device cd	# needed for CD and DVD burners
device uhci	# provides USB 1.x support
device ohci	# provides USB 1.x support
device ehci	# provides USB 2.0 support
device xhci	# provides USB 3.0 support
device usb	# USB Bus (required)
device umass	# Disks/Mass storage - Requires scbus and da
For an ATAPI burner, make sure these
	options are present:
device ata	# Legacy ATA/SATA controllers
device scbus	# SCSI bus (required for ATA/SCSI)
device pass	# Passthrough device (direct ATA/SCSI access)
device cd	# needed for CD and DVD burners
Note:
On FreeBSD versions prior to 10.x, this line is also
	 needed in the kernel configuration file if the burner is an
	 ATAPI device:
device atapicam
Alternately, this driver can be loaded at boot time by
	 adding the following line to
	 /boot/loader.conf:
atapicam_load="YES"
This will require a reboot of the system as this driver
	 can only be loaded at boot time.

To verify that FreeBSD recognizes the device, run
	dmesg and look for an entry for the device.
	On systems prior to 10.x, the device name in the first line of
	the output will be acd0 instead of
	cd0.
% dmesg | grep cd
cd0 at ahcich1 bus 0 scbus1 target 0 lun 0
cd0: <HL-DT-ST DVDRAM GU70N LT20> Removable CD-ROM SCSI-0 device
cd0: Serial Number M3OD3S34152
cd0: 150.000MB/s transfers (SATA 1.x, UDMA6, ATAPI 12bytes, PIO 8192bytes)
cd0: Attempt to query device size failed: NOT READY, Medium not present - tray closed
17.5.2. Burning a CD
In FreeBSD, cdrecord can be used to burn
	CDs. This command is installed with the
	sysutils/cdrtools package or port.
While cdrecord has many options, basic
	usage is simple. Specify the name of the
	ISO file to burn and, if the system has
	multiple burner devices, specify the name of the device to
	use:
cdrecord dev=device imagefile.iso
To determine the device name of the burner, use
	-scanbus which might produce results like
	this:
cdrecord -scanbus
ProDVD-ProBD-Clone 3.00 (amd64-unknown-freebsd10.0) Copyright (C) 1995-2010 Jörg Schilling
Using libscg version 'schily-0.9'
scsibus0:
 0,0,0 0) 'SEAGATE ' 'ST39236LW ' '0004' Disk
 0,1,0 1) 'SEAGATE ' 'ST39173W ' '5958' Disk
 0,2,0 2) *
 0,3,0 3) 'iomega ' 'jaz 1GB ' 'J.86' Removable Disk
 0,4,0 4) 'NEC ' 'CD-ROM DRIVE:466' '1.26' Removable CD-ROM
 0,5,0 5) *
 0,6,0 6) *
 0,7,0 7) *
scsibus1:
 1,0,0 100) *
 1,1,0 101) *
 1,2,0 102) *
 1,3,0 103) *
 1,4,0 104) *
 1,5,0 105) 'YAMAHA ' 'CRW4260 ' '1.0q' Removable CD-ROM
 1,6,0 106) 'ARTEC ' 'AM12S ' '1.06' Scanner
 1,7,0 107) *
Locate the entry for the CD burner and
	use the three numbers separated by commas as the value for
	dev. In this case, the Yamaha burner device
	is 1,5,0, so the appropriate input to
	specify that device is dev=1,5,0. Refer to
	the manual page for cdrecord for other ways
	to specify this value and for information on writing audio
	tracks and controlling the write speed.
Alternately, run the following command to get the device
	address of the burner:
camcontrol devlist
<MATSHITA CDRW/DVD UJDA740 1.00> at scbus1 target 0 lun 0 (cd0,pass0)
Use the numeric values for scbus,
	target, and lun. For
	this example, 1,0,0 is the device name to
	use.
17.5.3. Writing Data to an ISO File
	System
In order to produce a data CD, the data
	files that are going to make up the tracks on the
	CD must be prepared before they can be
	burned to the CD. In FreeBSD,
	sysutils/cdrtools installs
	mkisofs, which can be used to produce an
	ISO 9660 file system that is an image of a
	directory tree within a UNIX® file system. The simplest
	usage is to specify the name of the ISO
	file to create and the path to the files to place into the
	ISO 9660 file system:
mkisofs -o imagefile.iso /path/to/tree
This command maps the file names in the specified path to
	names that fit the limitations of the standard
	ISO 9660 file system, and will exclude
	files that do not meet the standard for ISO
	file systems.
A number of options are available to overcome the
	restrictions imposed by the standard. In particular,
	-R enables the Rock Ridge extensions common
	to UNIX® systems and -J enables Joliet
	extensions used by Microsoft® systems.
For CDs that are going to be used only
	on FreeBSD systems, -U can be used to disable
	all filename restrictions. When used with
	-R, it produces a file system image that is
	identical to the specified FreeBSD tree, even if it violates the
	ISO 9660 standard.
The last option of general use is -b.
	This is used to specify the location of a boot image for use
	in producing an “El Torito” bootable
	CD. This option takes an argument which is
	the path to a boot image from the top of the tree being
	written to the CD. By default,
	mkisofs creates an ISO
	image in “floppy disk emulation” mode, and thus
	expects the boot image to be exactly 1200, 1440 or
	2880 KB in size. Some boot loaders, like the one used by
	the FreeBSD distribution media, do not use emulation mode. In
	this case, -no-emul-boot should be used. So,
	if /tmp/myboot holds a bootable FreeBSD
	system with the boot image in
	/tmp/myboot/boot/cdboot, this command
	would produce
	/tmp/bootable.iso:
mkisofs -R -no-emul-boot -b boot/cdboot -o /tmp/bootable.iso /tmp/myboot
The resulting ISO image can be mounted
	as a memory disk with:
mdconfig -a -t vnode -f /tmp/bootable.iso -u 0
mount -t cd9660 /dev/md0 /mnt
One can then verify that /mnt and
	/tmp/myboot are identical.
There are many other options available for
	mkisofs to fine-tune its behavior. Refer
	to mkisofs(8) for details.
Note:
It is possible to copy a data CD to
	 an image file that is functionally equivalent to the image
	 file created with mkisofs. To do so, use
	 dd with the device name as the input
	 file and the name of the ISO to create as
	 the output file:
dd if=/dev/cd0 of=file.iso bs=2048
The resulting image file can be burned to
	 CD as described in Section 17.5.2, “Burning a CD”.

17.5.4. Using Data CDs
Once an ISO has been burned to a
	CD, it can be mounted by specifying the
	file system type, the name of the device containing the
	CD, and an existing mount point:
mount -t cd9660 /dev/cd0 /mnt
Since mount assumes that a file system
	is of type ufs, a Incorrect
	 super block error will occur if -t
	 cd9660 is not included when mounting a data
	CD.
While any data CD can be mounted this
	way, disks with certain ISO 9660 extensions
	might behave oddly. For example, Joliet disks store all
	filenames in two-byte Unicode characters. If some non-English
	characters show up as question marks, specify the local
	charset with -C. For more information, refer
	to mount_cd9660(8).
Note:
In order to do this character conversion with the help
	 of -C, the kernel requires the
	 cd9660_iconv.ko module to be loaded.
	 This can be done either by adding this line to
	 loader.conf:
cd9660_iconv_load="YES"
and then rebooting the machine, or by directly loading
	 the module with kldload.

Occasionally, Device not configured
	will be displayed when trying to mount a data
	CD. This usually means that the
	CD drive has not detected a disk in
	the tray, or that the drive is not visible on the bus. It
	can take a couple of seconds for a CD
	drive to detect media, so be
	patient.
Sometimes, a SCSI
	CD drive may be missed because it did not
	have enough time to answer the bus reset. To resolve this,
	a custom kernel can be created which increases the default
	SCSI delay. Add the following option to
	the custom kernel configuration file and rebuild the kernel
	using the instructions in Section 8.5, “Building and Installing a Custom Kernel”:
options SCSI_DELAY=15000
This tells the SCSI bus to pause 15
	seconds during boot, to give the CD
	drive every possible chance to answer the bus reset.
Note:
It is possible to burn a file directly to
	 CD, without creating an
	 ISO 9660 file system. This is known as
	 burning a raw data CD and some people do
	 this for backup purposes.
This type of disk can not be mounted as a normal data
	 CD. In order to retrieve the data burned
	 to such a CD, the data must be read from
	 the raw device node. For example, this command will extract
	 a compressed tar file located on the second
	 CD device into the current working
	 directory:
tar xzvf /dev/cd1
 In order to mount a data CD, the
	 data must be written using
	 mkisofs.

17.5.5. Duplicating Audio CDs
To duplicate an audio CD, extract the
	audio data from the CD to a series of
	files, then write these files to a blank
	CD.
Procedure 17.1, “Duplicating an Audio CD” describes how to
	duplicate and burn an audio CD. If the
	FreeBSD version is less than 10.0 and the device is
	ATAPI, the atapicam module
	must be first loaded using the instructions in Section 17.5.1, “Supported Devices”.
Procedure 17.1. Duplicating an Audio CD
	The sysutils/cdrtools package or
	 port installs cdda2wav. This command
	 can be used to extract all of the audio tracks, with each
	 track written to a separate WAV file in
	 the current working directory:
% cdda2wav -vall -B -Owav
A device name does not need to be specified if there
	 is only one CD device on the system.
	 Refer to the cdda2wav manual page for
	 instructions on how to specify a device and to learn more
	 about the other options available for this command.

	Use cdrecord to write the
	 .wav files:
% cdrecord -v dev=2,0 -dao -useinfo *.wav
Make sure that 2,0 is set
	 appropriately, as described in Section 17.5.2, “Burning a CD”.

Appendix C. Resources on the Internet
The rapid pace of FreeBSD progress makes print media
 impractical as a means of following the latest developments.
 Electronic resources are the best, if not often the only, way to
 stay informed of the latest advances. Since FreeBSD is a volunteer
 effort, the user community itself also generally serves as a
 “technical support department” of sorts, with
 electronic mail, web forums, and USENET news being the most
 effective way of reaching that community.
The most important points of contact with the FreeBSD user
 community are outlined below. Please send other resources not
 mentioned here to the FreeBSD documentation project mailing list so that they may also be
 included.
C.1. Websites
	The
	 FreeBSD Forums provide a web based discussion forum
	 for FreeBSD questions and technical
	 discussion.

	The BSDConferences
	 YouTube Channel provides a collection of high
	 quality videos from BSD conferences around the world.
	 This is a great way to watch key developers give
	 presentations about new work in FreeBSD.

5.7. Desktop Environments
Contributed by Valentino Vaschetto. This section describes how to install three popular desktop
 environments on a FreeBSD system. A desktop environment can range
 from a simple window manager to a complete suite of desktop
 applications. Over a hundred desktop environments are available
 in the x11-wm category of the Ports
 Collection.
5.7.1. GNOME
GNOME is a user-friendly
	desktop environment. It includes a panel for starting
	applications and displaying status, a desktop, a set of tools
	and applications, and a set of conventions that make it easy
	for applications to cooperate and be consistent with each
	other. More information regarding
	GNOME on FreeBSD can be found at https://www.FreeBSD.org/gnome.
	That web site contains additional documentation about
	installing, configuring, and managing
	GNOME on FreeBSD.
This desktop environment can be installed from a
	package:
pkg install gnome3
To instead build GNOME from
	ports, use the following command.
	GNOME is a large application and
	will take some time to compile, even on a fast
	computer.
cd /usr/ports/x11/gnome3
make install clean
GNOME
	requires /proc to be mounted. Add this
	line to /etc/fstab to mount this file
	system automatically during system startup:
proc /proc procfs rw 0 0
GNOME uses
	D-Bus and
	HAL for a message bus and hardware
	abstraction. These applications are automatically installed
	as dependencies of GNOME. Enable
	them in /etc/rc.conf so they will be
	started when the system boots:
dbus_enable="YES"
hald_enable="YES"
After installation,
	configure Xorg to start
	GNOME. The easiest way to do this
	is to enable the GNOME Display Manager,
	GDM, which is installed as part of
	the GNOME package or port. It can
	be enabled by adding this line to
	/etc/rc.conf:
gdm_enable="YES"
It is often desirable to also start all
	GNOME services. To achieve this,
	add a second line to /etc/rc.conf:
gnome_enable="YES"
GDM will start
	automatically when the system boots.
A second method for starting
	GNOME is to type
	startx from the command-line after
	configuring ~/.xinitrc. If this file
	already exists, replace the line that starts the current
	window manager with one that starts
	/usr/local/bin/gnome-session. If this
	file does not exist, create it with this command:
% echo "exec /usr/local/bin/gnome-session" > ~/.xinitrc
A third method is to use XDM as
	the display manager. In this case, create an executable
	~/.xsession:
% echo "exec /usr/local/bin/gnome-session" > ~/.xsession
5.7.2. KDE
KDE is another easy-to-use
	desktop environment. This desktop provides a suite of
	applications with a consistent look and feel, a standardized
	menu and toolbars, keybindings, color-schemes,
	internationalization, and a centralized, dialog-driven desktop
	configuration. More information on
	KDE can be found at http://www.kde.org/.
	For FreeBSD-specific information, consult http://freebsd.kde.org.
To install the KDE package,
	type:
pkg install x11/kde5
To instead build the KDE port,
	use the following command. Installing the port will provide a
	menu for selecting which components to install.
	KDE is a large application and will
	take some time to compile, even on a fast computer.
cd /usr/ports/x11/kde5
make install clean
KDE requires
	/proc to be mounted. Add this line to
	/etc/fstab to mount this file system
	automatically during system startup:
proc /proc procfs rw 0 0
KDE uses
	D-Bus and
	HAL for a message bus and hardware
	abstraction. These applications are automatically installed
	as dependencies of KDE. Enable
	them in /etc/rc.conf so they will be
	started when the system boots:
dbus_enable="YES"
hald_enable="YES"
Since KDE Plasma 5, the KDE Display Manager,
	KDM is no longer developed.
	A possible replacement is SDDM.
	To install it, type:
pkg install x11/sddm
Add this line to
	/etc/rc.conf:
sddm_enable="YES"
A second method for launching
	KDE Plasma is to type
	startx from the command line. For this to
	work, the following line is needed in
	~/.xinitrc:
exec ck-launch-session startplasma-x11
A third method for starting KDE Plasma
	is through XDM. To do so, create
	an executable ~/.xsession as
	follows:
% echo "exec ck-launch-session startplasma-x11" > ~/.xsession
Once KDE Plasma is started, refer to
	its built-in help system for more information on how to use
	its various menus and applications.
5.7.3. Xfce
Xfce is a desktop environment
	based on the GTK+ toolkit used by
	GNOME. However, it is more
	lightweight and provides a simple, efficient, easy-to-use
	desktop. It is fully configurable, has a main panel with
	menus, applets, and application launchers, provides a file
	manager and sound manager, and is themeable. Since it is
	fast, light, and efficient, it is ideal for older or slower
	machines with memory limitations. More information on
	Xfce can be found at http://www.xfce.org.
To install the Xfce
	package:
pkg install xfce
Alternatively, to build the port:
cd /usr/ports/x11-wm/xfce4
make install clean
Xfce uses
	D-Bus for a message bus. This
	application is automatically installed as dependency of
	Xfce. Enable it in
	/etc/rc.conf so it will be started when
	the system boots:
dbus_enable="YES"
Unlike GNOME or
	KDE,
	Xfce does not provide its own login
	manager. In order to start Xfce
	from the command line by typing startx,
	first create ~/.xinitrc with this
	command:
% echo ". /usr/local/etc/xdg/xfce4/xinitrc" > ~/.xinitrc
An alternate method is to use
	XDM. To configure this method,
	create an executable ~/.xsession:
% echo ". /usr/local/etc/xdg/xfce4/xinitrc" > ~/.xsession
3.6. Disk Organization
The smallest unit of organization that FreeBSD uses to find
 files is the filename. Filenames are case-sensitive, which
 means that readme.txt and
 README.TXT are two separate files. FreeBSD
 does not use the extension of a file to determine whether the
 file is a program, document, or some other form of data.
Files are stored in directories. A directory may contain no
 files, or it may contain many hundreds of files. A directory
 can also contain other directories, allowing a hierarchy of
 directories within one another in order to organize
 data.
Files and directories are referenced by giving the file or
 directory name, followed by a forward slash,
 /, followed by any other directory names that
 are necessary. For example, if the directory
 foo contains a directory
 bar which contains the
 file readme.txt, the full name, or
 path, to the file is
 foo/bar/readme.txt. Note that this is
 different from Windows® which uses \ to
 separate file and directory names. FreeBSD does not use drive
 letters, or other drive names in the path. For example, one
 would not type c:\foo\bar\readme.txt on
 FreeBSD.
Directories and files are stored in a file system. Each
 file system contains exactly one directory at the very top
 level, called the root directory for that
 file system. This root directory can contain other directories.
 One file system is designated the
 root file system or /.
 Every other file system is mounted under
 the root file system. No matter how many disks are on the FreeBSD
 system, every directory appears to be part of the same
 disk.
Consider three file systems, called A,
 B, and C. Each file
 system has one root directory, which contains two other
 directories, called A1, A2
 (and likewise B1, B2 and
 C1, C2).
Call A the root file system. If
 ls(1) is used to view the contents of this directory,
 it will show two subdirectories, A1 and
 A2. The directory tree looks like
 this:

A file system must be mounted on to a directory in another
 file system. When mounting file system B
 on to the directory A1, the root directory
 of B replaces A1, and
 the directories in B appear
 accordingly:

Any files that are in the B1 or
 B2 directories can be reached with the path
 /A1/B1 or
 /A1/B2 as necessary. Any
 files that were in /A1
 have been temporarily hidden. They will reappear if
 B is unmounted from
 A.
If B had been mounted on
 A2 then the diagram would look like
 this:

and the paths would be
 /A2/B1 and
 /A2/B2
 respectively.
File systems can be mounted on top of one another.
 Continuing the last example, the C file
 system could be mounted on top of the B1
 directory in the B file system, leading to
 this arrangement:

Or C could be mounted directly on to the
 A file system, under the
 A1 directory:

It is entirely possible to have one large root file system,
 and not need to create any others. There are some drawbacks to
 this approach, and one advantage.
Benefits of Multiple File Systems
	Different file systems can have different
	 mount options. For example, the root
	 file system can be mounted read-only, making it impossible
	 for users to inadvertently delete or edit a critical file.
	 Separating user-writable file systems, such as
	 /home, from other
	 file systems allows them to be mounted
	 nosuid. This option prevents the
	 suid/guid bits
	 on executables stored on the file system from taking effect,
	 possibly improving security.

	FreeBSD automatically optimizes the layout of files on a
	 file system, depending on how the file system is being used.
	 So a file system that contains many small files that are
	 written frequently will have a different optimization to one
	 that contains fewer, larger files. By having one big file
	 system this optimization breaks down.

	FreeBSD's file systems are robust if power is lost.
	 However, a power loss at a critical point could still damage
	 the structure of the file system. By splitting data over
	 multiple file systems it is more likely that the system will
	 still come up, making it easier to restore from backup as
	 necessary.

Benefit of a Single File System
	File systems are a fixed size. If you create a file
	 system when you install FreeBSD and give it a specific size,
	 you may later discover that you need to make the partition
	 bigger. This is not easily accomplished without backing up,
	 recreating the file system with the new size, and then
	 restoring the backed up data.
Important:
FreeBSD features the growfs(8) command, which makes
	 it possible to increase the size of file system on the
	 fly, removing this limitation.

File systems are contained in partitions. This does not
 have the same meaning as the common usage of the term partition
 (for example, MS-DOS® partition), because of FreeBSD's UNIX®
 heritage. Each partition is identified by a letter from
 a through to h. Each
 partition can contain only one file system, which means that
 file systems are often described by either their typical mount
 point in the file system hierarchy, or the letter of the
 partition they are contained in.
FreeBSD also uses disk space for
 swap space to provide
 virtual memory. This allows your
 computer to behave as though it has much more memory than it
 actually does. When FreeBSD runs out of memory, it moves some of
 the data that is not currently being used to the swap space, and
 moves it back in (moving something else out) when it needs
 it.
Some partitions have certain conventions associated with
 them.
	Partition	Convention
	a	Normally contains the root file system.
	b	Normally contains swap space.
	c	Normally the same size as the enclosing slice.
	 This allows utilities that need to work on the entire
	 slice, such as a bad block scanner, to work on the
	 c partition. A file system would not
	 normally be created on this partition.
	d	Partition d used to have a
	 special meaning associated with it, although that is now
	 gone and d may work as any normal
	 partition.

Disks in FreeBSD are divided into slices, referred to in
 Windows® as partitions, which are numbered from 1 to 4. These
 are then divided into partitions, which contain file systems,
 and are labeled using letters.
Slice numbers follow the device name, prefixed with an
 s, starting at 1. So
 “da0s1” is the first slice on
 the first SCSI drive. There can only be four physical slices on
 a disk, but there can be logical slices inside physical slices
 of the appropriate type. These extended slices are numbered
 starting at 5, so “ada0s5” is
 the first extended slice on the first SATA disk. These devices
 are used by file systems that expect to occupy a slice.
Slices, “dangerously dedicated” physical
 drives, and other drives contain
 partitions, which are represented as
 letters from a to h. This
 letter is appended to the device name, so
 “da0a” is the
 a partition on the first
 da drive, which is
 “dangerously dedicated”.
 “ada1s3e” is the fifth
 partition in the third slice of the second SATA disk
 drive.
Finally, each disk on the system is identified. A disk name
 starts with a code that indicates the type of disk, and then a
 number, indicating which disk it is. Unlike slices, disk
 numbering starts at 0. Common codes are listed in
 Table 3.3, “Disk Device Names”.
When referring to a partition, include the disk name,
 s, the slice number, and then the partition
 letter. Examples are shown in
 Example 3.12, “Sample Disk, Slice, and Partition Names”.
Example 3.13, “Conceptual Model of a Disk” shows a
 conceptual model of a disk layout.
When installing FreeBSD, configure the disk slices, create
 partitions within the slice to be used for FreeBSD, create a file
 system or swap space in each partition, and decide where each
 file system will be mounted.
Table 3.3. Disk Device Names
	Drive Type	Drive Device Name
	SATA and IDE
	 hard drives	ada or
	 ad
	SCSI hard drives and
	 USB storage devices	da
	SATA and IDE
	 CD-ROM drives	cd or
	 acd
	SCSI CD-ROM
	 drives	cd
	Floppy drives	fd
	Assorted non-standard CD-ROM
	 drives	mcd for Mitsumi
	 CD-ROM and scd for
	 Sony CD-ROM devices
	SCSI tape drives	sa
	IDE tape drives	ast
	RAID drives	Examples include aacd for
	 Adaptec® AdvancedRAID, mlxd and
	 mlyd for Mylex®,
	 amrd for AMI MegaRAID®,
	 idad for Compaq Smart RAID,
	 twed for 3ware® RAID.

Example 3.12. Sample Disk, Slice, and Partition Names
	Name	Meaning
	ada0s1a	The first partition (a) on the
		first slice (s1) on the first
		SATA
		disk (ada0).
	da1s2e	The fifth partition (e) on the
		second slice (s2) on the second
		SCSI disk (da1).

Example 3.13. Conceptual Model of a Disk
This diagram shows FreeBSD's view of the first
	SATA disk attached to the system. Assume
	that the disk is 250 GB in size, and contains an
	80 GB slice and a 170 GB slice (MS-DOS®
	partitions). The first slice contains a Windows®
	NTFS file system, C:,
	and the second slice contains a FreeBSD installation. This
	example FreeBSD installation has four data partitions and a swap
	partition.
The four partitions each hold a file system. Partition
	a is used for the root file system,
	d for /var/,
	e for /tmp/, and
	f for /usr/.
	Partition letter c refers to the entire
	slice, and so is not used for ordinary partitions.

Chapter 22. Localization -
 i18n/L10n Usage and
 Setup
Contributed
	by Andrey Chernov. Rewritten
	by Michael
	C. Wu. 22.1. Synopsis
FreeBSD is a distributed project with users and contributors
 located all over the world. As such, FreeBSD supports localization
 into many languages, allowing users to view, input, or process
 data in non-English languages. One can choose from most of the
 major languages, including, but not limited to: Chinese,
 German, Japanese, Korean, French, Russian, and
 Vietnamese.
The term internationalization has been shortened to
 i18n, which represents the number of letters
 between the first and the last letters of
 internationalization.
 L10n uses the same naming scheme, but from
 localization. The
 i18n/L10n methods,
 protocols, and applications allow users to use languages of
 their choice.
This chapter discusses the internationalization and
 localization features of FreeBSD. After reading this chapter, you
 will know:
	How locale names are constructed.

	How to set the locale for a login shell.

	How to configure the console for non-English
	 languages.

	How to configure Xorg for
	 different languages.

	How to find i18n-compliant
	 applications.

	Where to find more information for configuring specific
	 languages.

Before reading this chapter, you should:
	Know how to install
	 additional third-party
	 applications.

8.5. Building and Installing a Custom Kernel
Once the edits to the custom configuration file have been
 saved, the source code for the kernel can be compiled using the
 following steps:
Procedure 8.1. Building a Kernel
	Change to this directory:
cd /usr/src

	Compile the new kernel by specifying the name of the
	 custom kernel configuration file:
make buildkernel KERNCONF=MYKERNEL

	Install the new kernel associated with the specified
	 kernel configuration file. This command will copy the new
	 kernel to /boot/kernel/kernel and save
	 the old kernel to
	 /boot/kernel.old/kernel:
make installkernel KERNCONF=MYKERNEL

	Shutdown the system and reboot into the new kernel.
	 If something goes wrong, refer to The kernel does not boot.

By default, when a custom kernel is compiled, all kernel
 modules are rebuilt. To update a kernel faster or to build
 only custom modules, edit /etc/make.conf
 before starting to build the kernel.
For example, this variable specifies the list of modules to
 build instead of using the default of building all
 modules:
MODULES_OVERRIDE = linux acpi
Alternately, this variable lists which modules to exclude
 from the build process:
WITHOUT_MODULES = linux acpi sound
Additional variables are available. Refer to
 make.conf(5) for details.
B.6. Security Reference
	Cheswick, William R. and Steven M. Bellovin.
	 Firewalls and Internet Security: Repelling the
	 Wily Hacker. Reading, Mass. : Addison-Wesley,
	 1995. ISBN 0-201-63357-4

	Garfinkel, Simson. PGP Pretty Good
	 Privacy O'Reilly & Associates, Inc., 1995.
	 ISBN 1-56592-098-8

11.13. Power and Resource Management
Written by Hiten Pandya and Tom Rhodes. It is important to utilize hardware resources in an
 efficient manner. Power and resource management allows the
 operating system to monitor system limits and to possibly
 provide an alert if the system temperature increases
 unexpectedly. An early specification for providing power
 management was the Advanced Power Management
 (APM) facility. APM
 controls the power usage of a system based on its activity.
 However, it was difficult and inflexible for operating systems
 to manage the power usage and thermal properties of a system.
 The hardware was managed by the BIOS and the
 user had limited configurability and visibility into the power
 management settings. The APM
 BIOS is supplied by the vendor and is
 specific to the hardware platform. An APM
 driver in the operating system mediates access to the
 APM Software Interface, which allows
 management of power levels.
There are four major problems in APM.
 First, power management is done by the vendor-specific
 BIOS, separate from the operating system.
 For example, the user can set idle-time values for a hard drive
 in the APM BIOS so that,
 when exceeded, the BIOS spins down the hard
 drive without the consent of the operating system. Second, the
 APM logic is embedded in the
 BIOS, and it operates outside the scope of
 the operating system. This means that users can only fix
 problems in the APM
 BIOS by flashing a new one into the
 ROM, which is a dangerous procedure with the
 potential to leave the system in an unrecoverable state if it
 fails. Third, APM is a vendor-specific
 technology, meaning that there is a lot of duplication of
 efforts and bugs found in one vendor's BIOS
 may not be solved in others. Lastly, the APM
 BIOS did not have enough room to implement a
 sophisticated power policy or one that can adapt well to the
 purpose of the machine.
The Plug and Play BIOS
 (PNPBIOS) was unreliable in many situations.
 PNPBIOS is 16-bit technology, so the
 operating system has to use 16-bit emulation in order to
 interface with PNPBIOS methods. FreeBSD
 provides an APM driver as
 APM should still be used for systems
 manufactured at or before the year 2000. The driver is
 documented in apm(4).
The successor to APM is the Advanced
 Configuration and Power Interface (ACPI).
 ACPI is a standard written by an alliance of
 vendors to provide an interface for hardware resources and power
 management. It is a key element in Operating
	System-directed configuration and Power Management
 as it provides more control and flexibility to the operating
 system.
This chapter demonstrates how to configure
 ACPI on FreeBSD. It then offers some tips on
 how to debug ACPI and how to submit a problem
 report containing debugging information so that developers can
 diagnosis and fix ACPI issues.
11.13.1. Configuring ACPI
In FreeBSD the acpi(4) driver is loaded by default at
	system boot and should not be compiled
	into the kernel. This driver cannot be unloaded after boot
	because the system bus uses it for various hardware
	interactions. However, if the system is experiencing
	problems, ACPI can be disabled altogether
	by rebooting after setting
	hint.acpi.0.disabled="1" in
	/boot/loader.conf or by setting this
	variable at the loader prompt, as described in Section 12.2.3, “Stage Three”.
Note:
ACPI and APM
	 cannot coexist and should be used separately. The last one
	 to load will terminate if the driver notices the other is
	 running.

ACPI can be used to put the system into
	a sleep mode with acpiconf, the
	-s flag, and a number from
	1 to 5. Most users only
	need 1 (quick suspend to
	RAM) or 3 (suspend to
	RAM). Option 5 performs
	a soft-off which is the same as running
	halt -p.
Other options are available using
	sysctl. Refer to acpi(4) and
	acpiconf(8) for more information.
11.13.2. Common Problems
ACPI is present in all modern computers
	that conform to the ia32 (x86) and amd64
	(AMD) architectures. The full standard has
	many features including CPU performance
	management, power planes control, thermal zones, various
	battery systems, embedded controllers, and bus enumeration.
	Most systems implement less than the full standard. For
	instance, a desktop system usually only implements bus
	enumeration while a laptop might have cooling and battery
	management support as well. Laptops also have suspend and
	resume, with their own associated complexity.
An ACPI-compliant system has various
	components. The BIOS and chipset vendors
	provide various fixed tables, such as FADT,
	in memory that specify things like the APIC
	map (used for SMP), config registers, and
	simple configuration values. Additionally, a bytecode table,
	the Differentiated System Description Table
	DSDT, specifies a tree-like name space of
	devices and methods.
The ACPI driver must parse the fixed
	tables, implement an interpreter for the bytecode, and modify
	device drivers and the kernel to accept information from the
	ACPI subsystem. For FreeBSD, Intel® has
	provided an interpreter (ACPI-CA) that is
	shared with Linux® and NetBSD. The path to the
	ACPI-CA source code is
	src/sys/contrib/dev/acpica. The glue
	code that allows ACPI-CA to work on FreeBSD is
	in src/sys/dev/acpica/Osd. Finally,
	drivers that implement various ACPI devices
	are found in src/sys/dev/acpica.
For ACPI to work correctly, all the
	parts have to work correctly. Here are some common problems,
	in order of frequency of appearance, and some possible
	workarounds or fixes. If a fix does not resolve the issue,
	refer to Section 11.13.4, “Getting and Submitting Debugging Info” for instructions
	on how to submit a bug report.
11.13.2.1. Mouse Issues
In some cases, resuming from a suspend operation will
	 cause the mouse to fail. A known work around is to add
	 hint.psm.0.flags="0x3000" to
	 /boot/loader.conf.
11.13.2.2. Suspend/Resume
ACPI has three suspend to
	 RAM (STR) states,
	 S1-S3, and one suspend
	 to disk state (STD), called
	 S4. STD can be
	 implemented in two separate ways. The
	 S4BIOS is a
	 BIOS-assisted suspend to disk and
	 S4OS is implemented
	 entirely by the operating system. The normal state the
	 system is in when plugged in but not powered up is
	 “soft off” (S5).
Use sysctl hw.acpi to check for the
	 suspend-related items. These example results are from a
	 Thinkpad:
hw.acpi.supported_sleep_state: S3 S4 S5
hw.acpi.s4bios: 0
Use acpiconf -s to test
	 S3, S4, and
	 S5. An s4bios of one
	 (1) indicates
	 S4BIOS support instead
	 of S4 operating system support.
When testing suspend/resume, start with
	 S1, if supported. This state is most
	 likely to work since it does not require much driver
	 support. No one has implemented S2,
	 which is similar to S1. Next, try
	 S3. This is the deepest
	 STR state and requires a lot of driver
	 support to properly reinitialize the hardware.
A common problem with suspend/resume is that many device
	 drivers do not save, restore, or reinitialize their
	 firmware, registers, or device memory properly. As a first
	 attempt at debugging the problem, try:
sysctl debug.bootverbose=1
sysctl debug.acpi.suspend_bounce=1
acpiconf -s 3
This test emulates the suspend/resume cycle of all
	 device drivers without actually going into
	 S3 state. In some cases, problems such
	 as losing firmware state, device watchdog time out, and
	 retrying forever, can be captured with this method. Note
	 that the system will not really enter S3
	 state, which means devices may not lose power, and many
	 will work fine even if suspend/resume methods are totally
	 missing, unlike real S3 state.
Harder cases require additional hardware, such as a
	 serial port and cable for debugging through a serial
	 console, a Firewire port and cable for using dcons(4),
	 and kernel debugging skills.
To help isolate the problem, unload as many drivers as
	 possible. If it works, narrow down which driver is the
	 problem by loading drivers until it fails again. Typically,
	 binary drivers like nvidia.ko, display
	 drivers, and USB will have the most
	 problems while Ethernet interfaces usually work fine. If
	 drivers can be properly loaded and unloaded, automate this
	 by putting the appropriate commands in
	 /etc/rc.suspend and
	 /etc/rc.resume. Try setting
	 hw.acpi.reset_video to 1
	 if the display is messed up after resume. Try setting
	 longer or shorter values for
	 hw.acpi.sleep_delay to see if that
	 helps.
Try loading a recent Linux® distribution to see if
	 suspend/resume works on the same hardware. If it works on
	 Linux®, it is likely a FreeBSD driver problem. Narrowing down
	 which driver causes the problem will assist developers in
	 fixing the problem. Since the ACPI
	 maintainers rarely maintain other drivers, such as sound
	 or ATA, any driver problems should also
	 be posted to the freebsd-current list and mailed to the
	 driver maintainer. Advanced users can include debugging
	 printf(3)s in a problematic driver to track down where
	 in its resume function it hangs.
Finally, try disabling ACPI and
	 enabling APM instead. If suspend/resume
	 works with APM, stick with
	 APM, especially on older hardware
	 (pre-2000). It took vendors a while to get
	 ACPI support correct and older hardware
	 is more likely to have BIOS problems with
	 ACPI.
11.13.2.3. System Hangs
Most system hangs are a result of lost interrupts or an
	 interrupt storm. Chipsets may have problems based on boot,
	 how the BIOS configures interrupts before
	 correctness of the APIC
	 (MADT) table, and routing of the System
	 Control Interrupt (SCI).
Interrupt storms can be distinguished from lost
	 interrupts by checking the output of
	 vmstat -i and looking at the line that
	 has acpi0. If the counter is increasing
	 at more than a couple per second, there is an interrupt
	 storm. If the system appears hung, try breaking to
	 DDB (CTRL+ALT+ESC on console) and type
	 show interrupts.
When dealing with interrupt problems, try disabling
	 APIC support with
	 hint.apic.0.disabled="1" in
	 /boot/loader.conf.
11.13.2.4. Panics
Panics are relatively rare for ACPI
	 and are the top priority to be fixed. The first step is to
	 isolate the steps to reproduce the panic, if possible, and
	 get a backtrace. Follow the advice for enabling
	 options DDB and setting up a serial
	 console in Section 26.6.4, “Entering the DDB Debugger from the Serial Line” or setting
	 up a dump partition. To get a backtrace in
	 DDB, use tr. When
	 handwriting the backtrace, get at least the last five and
	 the top five lines in the trace.
Then, try to isolate the problem by booting with
	 ACPI disabled. If that works, isolate
	 the ACPI subsystem by using various
	 values of debug.acpi.disable. See
	 acpi(4) for some examples.
11.13.2.5. System Powers Up After Suspend or Shutdown
First, try setting
	 hw.acpi.disable_on_poweroff="0" in
	 /boot/loader.conf. This keeps
	 ACPI from disabling various events during
	 the shutdown process. Some systems need this value set to
	 1 (the default) for the same reason.
	 This usually fixes the problem of a system powering up
	 spontaneously after a suspend or poweroff.
11.13.2.6. BIOS Contains Buggy Bytecode
Some BIOS vendors provide incorrect
	 or buggy bytecode. This is usually manifested by kernel
	 console messages like this:
ACPI-1287: *** Error: Method execution failed [_SB_.PCI0.LPC0.FIGD._STA] \\
(Node 0xc3f6d160), AE_NOT_FOUND
Often, these problems may be resolved by updating the
	 BIOS to the latest revision. Most
	 console messages are harmless, but if there are other
	 problems, like the battery status is not working, these
	 messages are a good place to start looking for
	 problems.
11.13.3. Overriding the Default AML
The BIOS bytecode, known as
	ACPI Machine Language
	(AML), is compiled from a source language
	called ACPI Source Language
	(ASL). The AML is
	found in the table known as the Differentiated System
	Description Table (DSDT).
The goal of FreeBSD is for everyone to have working
	ACPI without any user intervention.
	Workarounds are still being developed for common mistakes made
	by BIOS vendors. The Microsoft®
	interpreter (acpi.sys and
	acpiec.sys) does not strictly check for
	adherence to the standard, and thus many
	BIOS vendors who only test
	ACPI under Windows® never fix their
	ASL. FreeBSD developers continue to identify
	and document which non-standard behavior is allowed by
	Microsoft®'s interpreter and replicate it so that FreeBSD can
	work without forcing users to fix the
	ASL.
To help identify buggy behavior and possibly fix it
	manually, a copy can be made of the system's
	ASL. To copy the system's
	ASL to a specified file name, use
	acpidump with -t, to show
	the contents of the fixed tables, and -d, to
	disassemble the AML:
acpidump -td > my.asl
Some AML versions assume the user is
	running Windows®. To override this, set
	hw.acpi.osname="Windows
	 2009" in
	/boot/loader.conf, using the most recent
	Windows® version listed in the ASL.
Other workarounds may require my.asl
	to be customized. If this file is edited, compile the new
	ASL using the following command. Warnings
	can usually be ignored, but errors are bugs that will usually
	prevent ACPI from working correctly.
iasl -f my.asl
Including -f forces creation of the
	AML, even if there are errors during
	compilation. Some errors, such as missing return statements,
	are automatically worked around by the FreeBSD
	interpreter.
The default output filename for iasl is
	DSDT.aml. Load this file instead of the
	BIOS's buggy copy, which is still present
	in flash memory, by editing
	/boot/loader.conf as follows:
acpi_dsdt_load="YES"
acpi_dsdt_name="/boot/DSDT.aml"
Be sure to copy DSDT.aml to
	/boot, then reboot the system. If this
	fixes the problem, send a diff(1) of the old and new
	ASL to freebsd-acpi so that developers can
	work around the buggy behavior in
	acpica.
11.13.4. Getting and Submitting Debugging Info
Written by Nate Lawson. With contributions from Peter Schultz and Tom Rhodes. The ACPI driver has a flexible
	debugging facility. A set of subsystems and the level of
	verbosity can be specified. The subsystems to debug are
	specified as layers and are broken down into components
	(ACPI_ALL_COMPONENTS) and
	ACPI hardware support
	(ACPI_ALL_DRIVERS). The verbosity of
	debugging output is specified as the level and ranges from
	just report errors (ACPI_LV_ERROR) to
	everything (ACPI_LV_VERBOSE). The level is
	a bitmask so multiple options can be set at once, separated by
	spaces. In practice, a serial console should be used to log
	the output so it is not lost as the console message buffer
	flushes. A full list of the individual layers and levels is
	found in acpi(4).
Debugging output is not enabled by default. To enable it,
	add options ACPI_DEBUG to the custom kernel
	configuration file if ACPI is compiled into
	the kernel. Add ACPI_DEBUG=1 to
	/etc/make.conf to enable it globally. If
	a module is used instead of a custom kernel, recompile just
	the acpi.ko module as follows:
cd /sys/modules/acpi/acpi && make clean && make ACPI_DEBUG=1
Copy the compiled acpi.ko to
	/boot/kernel and add the desired level
	and layer to /boot/loader.conf. The
	entries in this example enable debug messages for all
	ACPI components and hardware drivers and
	output error messages at the least verbose level:
debug.acpi.layer="ACPI_ALL_COMPONENTS ACPI_ALL_DRIVERS"
debug.acpi.level="ACPI_LV_ERROR"
If the required information is triggered by a specific
	event, such as a suspend and then resume, do not modify
	/boot/loader.conf. Instead, use
	sysctl to specify the layer and level after
	booting and preparing the system for the specific event. The
	variables which can be set using sysctl are
	named the same as the tunables in
	/boot/loader.conf.
Once the debugging information is gathered, it can be sent
	to freebsd-acpi so that it can be used by the FreeBSD
	ACPI maintainers to identify the root cause
	of the problem and to develop a solution.
Note:
Before submitting debugging information to this mailing
	 list, ensure the latest BIOS version is
	 installed and, if available, the embedded controller
	 firmware version.

When submitting a problem report, include the following
	information:
	Description of the buggy behavior, including system
	 type, model, and anything that causes the bug to appear.
	 Note as accurately as possible when the bug began
	 occurring if it is new.

	The output of dmesg after running
	 boot -v, including any error messages
	 generated by the bug.

	The dmesg output from boot
	 -v with ACPI disabled,
	 if disabling ACPI helps to fix the
	 problem.

	Output from sysctl hw.acpi. This
	 lists which features the system offers.

	The URL to a pasted version of the
	 system's ASL. Do
	 not send the ASL
	 directly to the list as it can be very large. Generate a
	 copy of the ASL by running this
	 command:
acpidump -dt > name-system.asl
Substitute the login name for
	 name and manufacturer/model for
	 system. For example, use
	 njl-FooCo6000.asl.

Most FreeBSD developers watch the FreeBSD-CURRENT mailing list, but one should
	submit problems to freebsd-acpi to be sure it is seen. Be
	patient when waiting for a response. If the bug is not
	immediately apparent, submit a bug report.
	When entering a PR,
	include the same information as requested above. This helps
	developers to track the problem and resolve it. Do not send a
	PR without emailing freebsd-acpi first as
	it is likely that the problem has been reported before.
11.13.5. References
More information about ACPI may be
	found in the following locations:
	The FreeBSD ACPI Mailing List Archives
	 (https://lists.freebsd.org/pipermail/freebsd-acpi/)

	The ACPI 2.0 Specification (http://acpi.info/spec.htm)

	acpi(4), acpi_thermal(4), acpidump(8),
	 iasl(8), and acpidb(8)

3.3. Users and Basic Account Management
FreeBSD allows multiple users to use the computer at the same
 time. While only one user can sit in front of the screen and
 use the keyboard at any one time, any number of users can log
 in to the system through the network. To use the system, each
 user should have their own user account.
This chapter describes:
	The different types of user accounts on a
	 FreeBSD system.

	How to add, remove, and modify user accounts.

	How to set limits to control the
	 resources that users and
	 groups are allowed to access.

	How to create groups and add users as members of a
	 group.

3.3.1. Account Types
Since all access to the FreeBSD system is achieved using
	accounts and all processes are run by users, user and account
	management is important.
There are three main types of accounts: system accounts,
	user accounts, and the superuser account.
3.3.1.1. System Accounts
System accounts are used to run services such as DNS,
	 mail, and web servers. The reason for this is security; if
	 all services ran as the superuser, they could act without
	 restriction.
Examples of system accounts are
	 daemon,
	 operator,
	 bind,
	 news, and
	 www.
Warning:
Care must be taken when using the operator group, as
	 unintended superuser-like access privileges may be
	 granted, including but not limited to shutdown, reboot,
	 and access to all items in /dev
	 in the group.

nobody is the
	 generic unprivileged system account. However, the more
	 services that use
	 nobody, the more
	 files and processes that user will become associated with,
	 and hence the more privileged that user becomes.
3.3.1.2. User Accounts
User accounts are assigned to real people and are used
	 to log in and use the system. Every person accessing the
	 system should have a unique user account. This allows the
	 administrator to find out who is doing what and prevents
	 users from clobbering the settings of other users.
Each user can set up their own environment to
	 accommodate their use of the system, by configuring their
	 default shell, editor, key bindings, and language
	 settings.
Every user account on a FreeBSD system has certain
	 information associated with it:
	User name
	The user name is typed at the
		login: prompt. Each user must have
		a unique user name. There are a number of rules for
		creating valid user names which are documented in
		passwd(5). It is recommended to use user names
		that consist of eight or fewer, all lower case
		characters in order to maintain backwards
		compatibility with applications.

	Password
	Each account has an associated password.

	User ID (UID)
	The User ID (UID) is a number
		used to uniquely identify the user to the FreeBSD system.
		Commands that allow a user name to be specified will
		first convert it to the UID. It is
		recommended to use a UID less than 65535, since higher
		values may cause compatibility issues with some
		software.

	Group ID (GID)
	The Group ID (GID) is a number
		used to uniquely identify the primary group that the
		user belongs to. Groups are a mechanism for
		controlling access to resources based on a user's
		GID rather than their
		UID. This can significantly reduce
		the size of some configuration files and allows users
		to be members of more than one group. It is
		recommended to use a GID of 65535 or lower as higher
		GIDs may break some software.

	Login class
	Login classes are an extension to the group
		mechanism that provide additional flexibility when
		tailoring the system to different users. Login
		classes are discussed further in
		Section 13.13.1, “Configuring Login Classes”.

	Password change time
	By default, passwords do not expire. However,
		password expiration can be enabled on a per-user
		basis, forcing some or all users to change their
		passwords after a certain amount of time has
		elapsed.

	Account expiration time
	By default, FreeBSD does not expire accounts. When
		creating accounts that need a limited lifespan, such
		as student accounts in a school, specify the account
		expiry date using pw(8). After the expiry time
		has elapsed, the account cannot be used to log in to
		the system, although the account's directories and
		files will remain.

	User's full name
	The user name uniquely identifies the account to
		FreeBSD, but does not necessarily reflect the user's real
		name. Similar to a comment, this information can
		contain spaces, uppercase characters, and be more
		than 8 characters long.

	Home directory
	The home directory is the full path to a directory
		on the system. This is the user's starting directory
		when the user logs in. A common convention is to put
		all user home directories under /home/username
		or /usr/home/username.
		Each user stores their personal files and
		subdirectories in their own home directory.

	User shell
	The shell provides the user's default environment
		for interacting with the system. There are many
		different kinds of shells and experienced users will
		have their own preferences, which can be reflected in
		their account settings.

3.3.1.3. The Superuser Account
The superuser account, usually called
	 root, is used to
	 manage the system with no limitations on privileges. For
	 this reason, it should not be used for day-to-day tasks like
	 sending and receiving mail, general exploration of the
	 system, or programming.
The superuser, unlike other user accounts, can operate
	 without limits, and misuse of the superuser account may
	 result in spectacular disasters. User accounts are unable
	 to destroy the operating system by mistake, so it is
	 recommended to login as a user account and to only become
	 the superuser when a command requires extra
	 privilege.
Always double and triple-check any commands issued as
	 the superuser, since an extra space or missing character can
	 mean irreparable data loss.
There are several ways to gain superuser privilege.
	 While one can log in as
	 root, this is
	 highly discouraged.
Instead, use su(1) to become the superuser. If
	 - is specified when running this command,
	 the user will also inherit the root user's environment. The
	 user running this command must be in the
	 wheel group or
	 else the command will fail. The user must also know the
	 password for the
	 root user
	 account.
In this example, the user only becomes superuser in
	 order to run make install as this step
	 requires superuser privilege. Once the command completes,
	 the user types exit to leave the
	 superuser account and return to the privilege of their user
	 account.
Example 3.1. Install a Program As the Superuser
% configure
% make
% su -
Password:
make install
exit
%

The built-in su(1) framework works well for single
	 systems or small networks with just one system
	 administrator. An alternative is to install the
	 security/sudo package or port. This
	 software provides activity logging and allows the
	 administrator to configure which users can run which
	 commands as the superuser.
3.3.2. Managing Accounts
FreeBSD provides a variety of different commands to manage
	user accounts. The most common commands are summarized in
	Table 3.1, “Utilities for Managing User Accounts”, followed by some
	examples of their usage. See the manual page for each utility
	for more details and usage examples.
Table 3.1. Utilities for Managing User Accounts
	Command	Summary
	adduser(8)	The recommended command-line application for
		adding new users.
	rmuser(8)	The recommended command-line application for
		removing users.
	chpass(1)	A flexible tool for changing user database
		information.
	passwd(1)	The command-line tool to change user
		passwords.
	pw(8)	A powerful and flexible tool for modifying all
		aspects of user accounts.

3.3.2.1. adduser
The recommended program for adding new users is
	 adduser(8). When a new user is added, this program
	 automatically updates /etc/passwd and
	 /etc/group. It also creates a home
	 directory for the new user, copies in the default
	 configuration files from
	 /usr/share/skel, and can optionally
	 mail the new user a welcome message. This utility must be
	 run as the superuser.
The adduser(8) utility is interactive and walks
	 through the steps for creating a new user account. As seen
	 in Example 3.2, “Adding a User on FreeBSD”, either input
	 the required information or press Return
	 to accept the default value shown in square brackets.
	 In this example, the user has been invited into the
	 wheel group,
	 allowing them to become the superuser with su(1).
	 When finished, the utility will prompt to either
	 create another user or to exit.
Example 3.2. Adding a User on FreeBSD
adduser
Username: jru
Full name: J. Random User
Uid (Leave empty for default):
Login group [jru]:
Login group is jru. Invite jru into other groups? []: wheel
Login class [default]:
Shell (sh csh tcsh zsh nologin) [sh]: zsh
Home directory [/home/jru]:
Home directory permissions (Leave empty for default):
Use password-based authentication? [yes]:
Use an empty password? (yes/no) [no]:
Use a random password? (yes/no) [no]:
Enter password:
Enter password again:
Lock out the account after creation? [no]:
Username : jru
Password : ****
Full Name : J. Random User
Uid : 1001
Class :
Groups : jru wheel
Home : /home/jru
Shell : /usr/local/bin/zsh
Locked : no
OK? (yes/no): yes
adduser: INFO: Successfully added (jru) to the user database.
Add another user? (yes/no): no
Goodbye!
#

Note:
Since the password is not echoed when typed, be
	 careful to not mistype the password when creating the user
	 account.

3.3.2.2. rmuser
To completely remove a user from the system, run
	 rmuser(8) as the superuser. This command performs the
	 following steps:
	Removes the user's crontab(1) entry, if one
	 exists.

	Removes any at(1) jobs belonging to the
	 user.

	Kills all processes owned by the user.

	Removes the user from the system's local password
	 file.

	Optionally removes the user's home directory, if it
	 is owned by the user.

	Removes the incoming mail files belonging to the
	 user from /var/mail.

	Removes all files owned by the user from temporary
	 file storage areas such as
	 /tmp.

	Finally, removes the username from all groups to
	 which it belongs in /etc/group. If
	 a group becomes empty and the group name is the same as
	 the username, the group is removed. This complements
	 the per-user unique groups created by
	 adduser(8).

rmuser(8) cannot be used to remove superuser
	 accounts since that is almost always an indication of
	 massive destruction.
By default, an interactive mode is used, as shown
	 in the following example.
Example 3.3. rmuser Interactive Account
	 Removal
rmuser jru
Matching password entry:
jru:*:1001:1001::0:0:J. Random User:/home/jru:/usr/local/bin/zsh
Is this the entry you wish to remove? y
Remove user's home directory (/home/jru)? y
Removing user (jru): mailspool home passwd.
#

3.3.2.3. chpass
Any user can use chpass(1) to change their default
	 shell and personal information associated with their user
	 account. The superuser can use this utility to change
	 additional account information for any user.
When passed no options, aside from an optional username,
	 chpass(1) displays an editor containing user
	 information. When the user exits from the editor, the user
	 database is updated with the new information.
Note:
This utility will prompt for the user's password when
	 exiting the editor, unless the utility is run as the
	 superuser.

In Example 3.4, “Using chpass as
	 Superuser”, the
	 superuser has typed chpass jru and is
	 now viewing the fields that can be changed for this user.
	 If jru runs this
	 command instead, only the last six fields will be displayed
	 and available for editing. This is shown in
	 Example 3.5, “Using chpass as Regular
	 User”.
Example 3.4. Using chpass as
	 Superuser
#Changing user database information for jru.
Login: jru
Password: *
Uid [#]: 1001
Gid [# or name]: 1001
Change [month day year]:
Expire [month day year]:
Class:
Home directory: /home/jru
Shell: /usr/local/bin/zsh
Full Name: J. Random User
Office Location:
Office Phone:
Home Phone:
Other information:

Example 3.5. Using chpass as Regular
	 User
#Changing user database information for jru.
Shell: /usr/local/bin/zsh
Full Name: J. Random User
Office Location:
Office Phone:
Home Phone:
Other information:

Note:
The commands chfn(1) and chsh(1) are links
	 to chpass(1), as are ypchpass(1),
	 ypchfn(1), and ypchsh(1). Since
	 NIS support is automatic, specifying
	 the yp before the command is not
	 necessary. How to configure NIS is covered in Chapter 29, Network Servers.

3.3.2.4. passwd
Any user can easily change their password using
	 passwd(1). To prevent accidental or unauthorized
	 changes, this command will prompt for the user's original
	 password before a new password can be set:
Example 3.6. Changing Your Password
% passwd
Changing local password for jru.
Old password:
New password:
Retype new password:
passwd: updating the database...
passwd: done

The superuser can change any user's password by
	 specifying the username when running passwd(1). When
	 this utility is run as the superuser, it will not prompt for
	 the user's current password. This allows the password to be
	 changed when a user cannot remember the original
	 password.
Example 3.7. Changing Another User's Password as the
	 Superuser
passwd jru
Changing local password for jru.
New password:
Retype new password:
passwd: updating the database...
passwd: done

Note:
As with chpass(1), yppasswd(1) is a link to
	 passwd(1), so NIS works with
	 either command.

3.3.2.5. pw
The pw(8) utility can create, remove,
	 modify, and display users and groups. It functions as a
	 front end to the system user and group files. pw(8)
	 has a very powerful set of command line options that make it
	 suitable for use in shell scripts, but new users may find it
	 more complicated than the other commands presented in this
	 section.
3.3.3. Managing Groups
A group is a list of users. A group is identified by its
	group name and GID. In FreeBSD, the kernel
	uses the UID of a process, and the list of
	groups it belongs to, to determine what the process is allowed
	to do. Most of the time, the GID of a user
	or process usually means the first group in the list.
The group name to GID mapping is listed
	in /etc/group. This is a plain text file
	with four colon-delimited fields. The first field is the
	group name, the second is the encrypted password, the third
	the GID, and the fourth the comma-delimited
	list of members. For a more complete description of the
	syntax, refer to group(5).
The superuser can modify /etc/group
	using a text editor. Alternatively, pw(8) can be used to
	add and edit groups. For example, to add a group called
	teamtwo and then
	confirm that it exists:
Example 3.8. Adding a Group Using pw(8)
pw groupadd teamtwo
pw groupshow teamtwo
teamtwo:*:1100:

In this example, 1100 is the
	GID of
	teamtwo. Right
	now, teamtwo has no
	members. This command will add
	jru as a member of
	teamtwo.
Example 3.9. Adding User Accounts to a New Group Using
	 pw(8)
pw groupmod teamtwo -M jru
pw groupshow teamtwo
teamtwo:*:1100:jru

The argument to -M is a comma-delimited
	list of users to be added to a new (empty) group or to replace
	the members of an existing group. To the user, this group
	membership is different from (and in addition to) the user's
	primary group listed in the password file. This means that
	the user will not show up as a member when using
	groupshow with pw(8), but will show up
	when the information is queried via id(1) or a similar
	tool. When pw(8) is used to add a user to a group, it
	only manipulates /etc/group and does not
	attempt to read additional data from
	/etc/passwd.
Example 3.10. Adding a New Member to a Group Using pw(8)
pw groupmod teamtwo -m db
pw groupshow teamtwo
teamtwo:*:1100:jru,db

In this example, the argument to -m is a
	comma-delimited list of users who are to be added to the
	group. Unlike the previous example, these users are appended
	to the group and do not replace existing users in the
	group.
Example 3.11. Using id(1) to Determine Group Membership
% id jru
uid=1001(jru) gid=1001(jru) groups=1001(jru), 1100(teamtwo)

In this example,
	jru is a member of
	the groups jru and
	teamtwo.
For more information about this command and the format of
	/etc/group, refer to pw(8) and
	group(5).
22.3. Finding i18n Applications
i18n applications are programmed using
 i18n kits under libraries. These allow
 developers to write a simple file and translate displayed menus
 and texts to each language.
The FreeBSD
	Ports Collection contains many applications with
 built-in support for wide or multibyte characters for several
 languages. Such applications include i18n in
 their names for easy identification. However, they do not
 always support the language needed.
Some applications can be compiled with the specific
 charset. This is usually done in the port's
 Makefile or by passing a value to
 configure. Refer to the
 i18n documentation in the respective FreeBSD
 port's source for more information on how to determine the
 needed configure value or the port's
 Makefile to determine which compile options
 to use when building the port.
15.5. Available MAC Policies
The default FreeBSD kernel
 includes options MAC. This means that every
 module included with the MAC framework can be
 loaded with kldload as a run-time kernel
 module. After testing the module, add the module name to
 /boot/loader.conf so that it will load
 during boot. Each module also provides a kernel option for
 those administrators who choose to compile their own custom
 kernel.
FreeBSD includes a group of policies that will cover most
 security requirements. Each policy is summarized below. The
 last three policies support integer settings in place of the
 three default labels.
15.5.1. The MAC See Other UIDs Policy
Module name:
	mac_seeotheruids.ko
Kernel configuration line:
	options MAC_SEEOTHERUIDS
Boot option:
	mac_seeotheruids_load="YES"
The mac_seeotheruids(4) module extends the
	security.bsd.see_other_uids and
	security.bsd.see_other_gids
	sysctl tunables. This option does not
	require any labels to be set before configuration and can
	operate transparently with other modules.
After loading the module, the following
	sysctl tunables may be used to control its
	features:
	security.mac.seeotheruids.enabled
	 enables the module and implements the default settings
	 which deny users the ability to view processes and sockets
	 owned by other users.

	
	 security.mac.seeotheruids.specificgid_enabled
	 allows specified groups to be exempt from this policy. To
	 exempt specific groups, use the
	 security.mac.seeotheruids.specificgid=XXX
	 sysctl tunable, replacing
	 XXX with the numeric group ID
	 to be exempted.

	
	 security.mac.seeotheruids.primarygroup_enabled
	 is used to exempt specific primary groups from this
	 policy. When using this tunable,
	 security.mac.seeotheruids.specificgid_enabled
	 may not be set.

15.5.2. The MAC BSD Extended Policy
Module name:
	mac_bsdextended.ko
Kernel configuration line:
	options MAC_BSDEXTENDED
Boot option:
	mac_bsdextended_load="YES"
The mac_bsdextended(4) module enforces a file system
	firewall. It provides an extension to the standard file
	system permissions model, permitting an administrator to
	create a firewall-like ruleset to protect files, utilities,
	and directories in the file system hierarchy. When access to
	a file system object is attempted, the list of rules is
	iterated until either a matching rule is located or the end is
	reached. This behavior may be changed using
	security.mac.bsdextended.firstmatch_enabled.
	Similar to other firewall modules in FreeBSD, a file containing
	the access control rules can be created and read by the system
	at boot time using an rc.conf(5) variable.
The rule list may be entered using ugidfw(8) which
	has a syntax similar to ipfw(8). More tools can be
	written by using the functions in the libugidfw(3)
	library.
After the mac_bsdextended(4) module has been loaded,
	the following command may be used to list the current rule
	configuration:
ugidfw list
0 slots, 0 rules
By default, no rules are defined and everything is
	completely accessible. To create a rule which blocks all
	access by users but leaves root unaffected:
ugidfw add subject not uid root new object not uid root mode n
While this rule is simple to implement, it is a very bad
	idea as it blocks all users from issuing any commands. A
	more realistic example blocks user1 all access, including
	directory listings, to user2's
	home directory:
ugidfw set 2 subject uid user1 object uid user2 mode n
ugidfw set 3 subject uid user1 object gid user2 mode n
Instead of user1, not
	 uid user2 could be used
	in order to enforce the same access restrictions for all
	users. However, the root user is unaffected by
	these rules.
Note:
Extreme caution should be taken when working with this
	 module as incorrect use could block access to certain
	 parts of the file system.

15.5.3. The MAC Interface Silencing Policy
Module name: mac_ifoff.ko
Kernel configuration line: options
	 MAC_IFOFF
Boot option:
	mac_ifoff_load="YES"
The mac_ifoff(4) module is used to disable network
	interfaces on the fly and to keep network interfaces from
	being brought up during system boot. It does not use labels
	and does not depend on any other
	MAC modules.
Most of this module's control is performed through these
	sysctl tunables:
	security.mac.ifoff.lo_enabled
	 enables or disables all traffic on the loopback,
	 lo(4), interface.

	security.mac.ifoff.bpfrecv_enabled
	 enables or disables all traffic on the Berkeley Packet
	 Filter interface, bpf(4).

	security.mac.ifoff.other_enabled
	 enables or disables traffic on all other
	 interfaces.

One of the most common uses of mac_ifoff(4) is
	network monitoring in an environment where network traffic
	should not be permitted during the boot sequence. Another
	use would be to write a script which uses an application such
	as security/aide to automatically block
	network traffic if it finds new or altered files in protected
	directories.
15.5.4. The MAC Port Access Control List Policy
Module name: mac_portacl.ko
Kernel configuration line:
	MAC_PORTACL
Boot option:
	mac_portacl_load="YES"
The mac_portacl(4) module is used to limit binding to
	local TCP and UDP ports,
	making it possible to allow non-root users to bind to
	specified privileged ports below 1024.
Once loaded, this module enables the
	MAC policy on all sockets. The following
	tunables are available:
	security.mac.portacl.enabled
	 enables or disables the policy completely.

	security.mac.portacl.port_high
	 sets the highest port number that mac_portacl(4)
	 protects.

	security.mac.portacl.suser_exempt,
	 when set to a non-zero value, exempts the root user from this
	 policy.

	security.mac.portacl.rules
	 specifies the policy as a text string of the form
	 rule[,rule,...], with as many rules as
	 needed, and where each rule is of the form
	 idtype:id:protocol:port. The
	 idtype is either
	 uid or gid. The
	 protocol parameter can be
	 tcp or udp. The
	 port parameter is the port number
	 to allow the specified user or group to bind to. Only
	 numeric values can be used for the user ID, group ID,
	 and port parameters.

By default, ports below 1024 can only be used by
	privileged processes which run as root. For mac_portacl(4)
	to allow non-privileged processes to bind to ports below 1024,
	set the following tunables as
	follows:
sysctl security.mac.portacl.port_high=1023
sysctl net.inet.ip.portrange.reservedlow=0
sysctl net.inet.ip.portrange.reservedhigh=0
To prevent the root user from being affected
	by this policy, set
	security.mac.portacl.suser_exempt to a
	non-zero value.
sysctl security.mac.portacl.suser_exempt=1
To allow the www
	user with UID 80 to bind to port 80
	without ever needing root privilege:
sysctl security.mac.portacl.rules=uid:80:tcp:80
This next example permits the user with the
	UID of 1001 to bind to
	TCP ports 110 (POP3) and 995
	(POP3s):
sysctl security.mac.portacl.rules=uid:1001:tcp:110,uid:1001:tcp:995
15.5.5. The MAC Partition Policy
Module name: mac_partition.ko
Kernel configuration line:
	options MAC_PARTITION
Boot option:
	mac_partition_load="YES"
The mac_partition(4) policy drops processes into
	specific “partitions” based on their
	MAC label. Most configuration for this
	policy is done using setpmac(8). One
	sysctl tunable is available for this
	policy:
	security.mac.partition.enabled
	 enables the enforcement of MAC process
	 partitions.

When this policy is enabled, users will only be permitted
	to see their processes, and any others within their partition,
	but will not be permitted to work with utilities outside the
	scope of this partition. For instance, a user in the
	insecure class will not be permitted to
	access top as well as many other commands
	that must spawn a process.
This example adds top to the label set
	on users in the insecure class. All
	processes spawned by users in the insecure
	class will stay in the partition/13
	label.
setpmac partition/13 top
This command displays the partition label and the process
	list:
ps Zax
This command displays another user's process partition
	label and that user's currently running processes:
ps -ZU trhodes
Note:
Users can see processes in root's label unless the
	 mac_seeotheruids(4) policy is loaded.

15.5.6. The MAC Multi-Level Security Module
Module name: mac_mls.ko
Kernel configuration line:
	options MAC_MLS
Boot option: mac_mls_load="YES"
The mac_mls(4) policy controls access between
	subjects and objects in the system by enforcing a strict
	information flow policy.
In MLS environments, a
	“clearance” level is set in the label of each
	subject or object, along with compartments. Since these
	clearance levels can reach numbers greater than several
	thousand, it would be a daunting task to thoroughly configure
	every subject or object. To ease this administrative
	overhead, three labels are included in this policy:
	mls/low, mls/equal, and
	mls/high, where:
	Anything labeled with mls/low will
	 have a low clearance level and not be permitted to access
	 information of a higher level. This label also prevents
	 objects of a higher clearance level from writing or
	 passing information to a lower level.

	mls/equal should be placed on
	 objects which should be exempt from the policy.

	mls/high is the highest level of
	 clearance possible. Objects assigned this label will hold
	 dominance over all other objects in the system; however,
	 they will not permit the leaking of information to objects
	 of a lower class.

MLS provides:
	A hierarchical security level with a set of
	 non-hierarchical categories.

	Fixed rules of no read up, no write
	 down. This means that a subject can have read
	 access to objects on its own level or below, but not
	 above. Similarly, a subject can have write access to
	 objects on its own level or above, but not beneath.

	Secrecy, or the prevention of inappropriate disclosure
	 of data.

	A basis for the design of systems that concurrently
	 handle data at multiple sensitivity levels without leaking
	 information between secret and confidential.

The following sysctl tunables are
	available:
	security.mac.mls.enabled is used to
	 enable or disable the MLS
	 policy.

	security.mac.mls.ptys_equal
	 labels all pty(4) devices as
	 mls/equal during creation.

	security.mac.mls.revocation_enabled
	 revokes access to objects after their label changes to a
	 label of a lower grade.

	security.mac.mls.max_compartments
	 sets the maximum number of compartment levels allowed on a
	 system.

To manipulate MLS labels, use
	setfmac(8). To assign a label to an object:
setfmac mls/5 test
To get the MLS label for the file
	test:
getfmac test
Another approach is to create a master policy file in
	/etc/ which specifies the
	MLS policy information and to feed that
	file to setfmac.
When using the MLS policy module, an
	administrator plans to control the flow of sensitive
	information. The default block read up block write
	 down sets everything to a low state. Everything
	is accessible and an administrator slowly augments the
	confidentiality of the information.
Beyond the three basic label options, an administrator
	may group users and groups as required to block the
	information flow between them. It might be easier to look at
	the information in clearance levels using descriptive words,
	such as classifications of Confidential,
	Secret, and Top Secret.
	Some administrators instead create different groups based on
	project levels. Regardless of the classification method, a
	well thought out plan must exist before implementing a
	restrictive policy.
Some example situations for the MLS
	policy module include an e-commerce web server, a file server
	holding critical company information, and financial
	institution environments.
15.5.7. The MAC Biba Module
Module name: mac_biba.ko
Kernel configuration line: options
	 MAC_BIBA
Boot option: mac_biba_load="YES"
The mac_biba(4) module loads the
	MAC Biba policy. This policy is similar to
	the MLS policy with the exception that the
	rules for information flow are slightly reversed. This is to
	prevent the downward flow of sensitive information whereas the
	MLS policy prevents the upward flow of
	sensitive information.
In Biba environments, an “integrity” label is
	set on each subject or object. These labels are made up of
	hierarchical grades and non-hierarchical components. As a
	grade ascends, so does its integrity.
Supported labels are biba/low,
	biba/equal, and
	biba/high, where:
	biba/low is considered the lowest
	 integrity an object or subject may have. Setting this on
	 objects or subjects blocks their write access to objects
	 or subjects marked as biba/high, but
	 will not prevent read access.

	biba/equal should only be placed on
	 objects considered to be exempt from the policy.

	biba/high permits writing to
	 objects set at a lower label, but does not permit reading
	 that object. It is recommended that this label be
	 placed on objects that affect the integrity of the entire
	 system.

Biba provides:
	Hierarchical integrity levels with a set of
	 non-hierarchical integrity categories.

	Fixed rules are no write up, no read
	 down, the opposite of
	 MLS. A subject can have write access
	 to objects on its own level or below, but not above.
	 Similarly, a subject can have read access to objects on
	 its own level or above, but not below.

	Integrity by preventing inappropriate modification of
	 data.

	Integrity levels instead of MLS
	 sensitivity levels.

The following tunables can be used to manipulate the Biba
	policy:
	security.mac.biba.enabled is used
	 to enable or disable enforcement of the Biba policy on the
	 target machine.

	security.mac.biba.ptys_equal is
	 used to disable the Biba policy on pty(4)
	 devices.

	security.mac.biba.revocation_enabled
	 forces the revocation of access to objects if the label is
	 changed to dominate the subject.

To access the Biba policy setting on system objects, use
	setfmac and
	getfmac:
setfmac biba/low test
getfmac test
test: biba/low
Integrity, which is different from sensitivity, is used to
	guarantee that information is not manipulated by untrusted
	parties. This includes information passed between subjects
	and objects. It ensures that users will only be able to
	modify or access information they have been given explicit
	access to. The mac_biba(4) security policy module
	permits an administrator to configure which files and programs
	a user may see and invoke while assuring that the programs and
	files are trusted by the system for that user.
During the initial planning phase, an administrator must
	be prepared to partition users into grades, levels, and areas.
	The system will default to a high label once this policy
	module is enabled, and it is up to the administrator to
	configure the different grades and levels for users. Instead
	of using clearance levels, a good planning method could
	include topics. For instance, only allow developers
	modification access to the source code repository, source
	code compiler, and other development utilities. Other users
	would be grouped into other categories such as testers,
	designers, or end users and would only be permitted read
	access.
A lower integrity subject is unable to write to a higher
	integrity subject and a higher integrity subject cannot list
	or read a lower integrity object. Setting a label at the
	lowest possible grade could make it inaccessible to subjects.
	Some prospective environments for this security policy module
	would include a constrained web server, a development and test
	machine, and a source code repository. A less useful
	implementation would be a personal workstation, a machine used
	as a router, or a network firewall.
15.5.8. The MAC Low-watermark Module
Module name: mac_lomac.ko
Kernel configuration line: options
	 MAC_LOMAC
Boot option:
	mac_lomac_load="YES"
Unlike the MAC Biba policy, the
	mac_lomac(4) policy permits access to lower integrity
	objects only after decreasing the integrity level to not
	disrupt any integrity rules.
The Low-watermark integrity policy works almost
	identically to Biba, with the exception of using floating
	labels to support subject demotion via an auxiliary grade
	compartment. This secondary compartment takes the form
	[auxgrade]. When assigning a policy with
	an auxiliary grade, use the syntax
	lomac/10[2], where
	2 is the auxiliary grade.
This policy relies on the ubiquitous labeling of all
	system objects with integrity labels, permitting subjects to
	read from low integrity objects and then downgrading the label
	on the subject to prevent future writes to high integrity
	objects using [auxgrade]. The policy may
	provide greater compatibility and require less initial
	configuration than Biba.
Like the Biba and MLS policies,
	setfmac and setpmac
	are used to place labels on system objects:
setfmac /usr/home/trhodes lomac/high[low]
getfmac /usr/home/trhodes lomac/high[low]
The auxiliary grade low is a feature
	provided only by the MAC
	LOMAC policy.
29.7. Domain Name System (DNS)
Domain Name System (DNS) is the protocol
 through which domain names are mapped to IP
 addresses, and vice versa. DNS is
 coordinated across the Internet through a somewhat complex
 system of authoritative root, Top Level Domain
 (TLD), and other smaller-scale name servers,
 which host and cache individual domain information. It is not
 necessary to run a name server to perform
 DNS lookups on a system.
The following table describes some of the terms associated
 with DNS:
Table 29.4. DNS Terminology
	Term	Definition
	Forward DNS	Mapping of hostnames to IP
	 addresses.
	Origin	Refers to the domain covered in a particular zone
	 file.
	Resolver	A system process through which a machine queries
	 a name server for zone information.
	Reverse DNS	Mapping of IP addresses to
	 hostnames.
	Root zone	The beginning of the Internet zone hierarchy. All
	 zones fall under the root zone, similar to how all files
	 in a file system fall under the root directory.
	Zone	An individual domain, subdomain, or portion of the
	 DNS administered by the same
	 authority.

Examples of zones:
	. is how the root zone is
	 usually referred to in documentation.

	org. is a Top Level Domain
	 (TLD) under the root zone.

	example.org. is a zone
	 under the org.
	 TLD.

	1.168.192.in-addr.arpa is a
	 zone referencing all IP addresses which
	 fall under the 192.168.1.*
	 IP address space.

As one can see, the more specific part of a hostname
 appears to its left. For example, example.org. is more
 specific than org., as
 org. is more specific than the root
 zone. The layout of each part of a hostname is much like a file
 system: the /dev directory falls within the
 root, and so on.
29.7.1. Reasons to Run a Name Server
Name servers generally come in two forms: authoritative
	name servers, and caching (also known as resolving) name
	servers.
An authoritative name server is needed when:
	One wants to serve DNS information
	 to the world, replying authoritatively to queries.

	A domain, such as example.org, is
	 registered and IP addresses need to be
	 assigned to hostnames under it.

	An IP address block requires
	 reverse DNS entries
	 (IP to hostname).

	A backup or second name server, called a slave, will
	 reply to queries.

A caching name server is needed when:
	A local DNS server may cache and
	 respond more quickly than querying an outside name
	 server.

When one queries for www.FreeBSD.org, the
	resolver usually queries the uplink ISP's
	name server, and retrieves the reply. With a local, caching
	DNS server, the query only has to be made
	once to the outside world by the caching
	DNS server. Additional queries will not
	have to go outside the local network, since the information is
	cached locally.
29.7.2. DNS Server Configuration
Unbound is provided in the FreeBSD
	base system. By default, it will provide
	DNS resolution to the local machine only.
	While the base system package can be configured to provide
	resolution services beyond the local machine, it is
	recommended that such requirements be addressed by installing
	Unbound from the FreeBSD Ports
	Collection.
To enable Unbound, add the
	following to /etc/rc.conf:
local_unbound_enable="YES"
Any existing nameservers in
	/etc/resolv.conf will be configured as
	forwarders in the new Unbound
	configuration.
Note:
If any of the listed nameservers do not support
	 DNSSEC, local DNS
	 resolution will fail. Be sure to test each nameserver and
	 remove any that fail the test. The following command will
	 show the trust tree or a failure for a nameserver running on
	 192.168.1.1:

% drill -S FreeBSD.org @192.168.1.1
Once each nameserver is confirmed to support
	DNSSEC, start
	Unbound:
service local_unbound onestart
This will take care of updating
	/etc/resolv.conf so that queries for
	DNSSEC secured domains will now work. For
	example, run the following to validate the FreeBSD.org
	DNSSEC trust tree:
% drill -S FreeBSD.org
;; Number of trusted keys: 1
;; Chasing: freebsd.org. A

DNSSEC Trust tree:
freebsd.org. (A)
|---freebsd.org. (DNSKEY keytag: 36786 alg: 8 flags: 256)
 |---freebsd.org. (DNSKEY keytag: 32659 alg: 8 flags: 257)
 |---freebsd.org. (DS keytag: 32659 digest type: 2)
 |---org. (DNSKEY keytag: 49587 alg: 7 flags: 256)
 |---org. (DNSKEY keytag: 9795 alg: 7 flags: 257)
 |---org. (DNSKEY keytag: 21366 alg: 7 flags: 257)
 |---org. (DS keytag: 21366 digest type: 1)
 | |---. (DNSKEY keytag: 40926 alg: 8 flags: 256)
 | |---. (DNSKEY keytag: 19036 alg: 8 flags: 257)
 |---org. (DS keytag: 21366 digest type: 2)
 |---. (DNSKEY keytag: 40926 alg: 8 flags: 256)
 |---. (DNSKEY keytag: 19036 alg: 8 flags: 257)
;; Chase successful
Chapter 18. GEOM: Modular Disk Transformation Framework
Written by Tom Rhodes. 18.1. Synopsis
In FreeBSD, the GEOM framework permits
 access and control to classes, such as Master Boot Records and
 BSD labels, through the use of providers, or
 the disk devices in /dev. By supporting
 various software RAID configurations,
 GEOM transparently provides access to the
 operating system and operating system utilities.
This chapter covers the use of disks under the
 GEOM framework in FreeBSD. This includes the
 major RAID control utilities which use the
 framework for configuration. This chapter is not a definitive
 guide to RAID configurations and only
 GEOM-supported RAID
 classifications are discussed.
After reading this chapter, you will know:
	What type of RAID support is
	 available through GEOM.

	How to use the base utilities to configure, maintain,
	 and manipulate the various RAID
	 levels.

	How to mirror, stripe, encrypt, and remotely connect
	 disk devices through GEOM.

	How to troubleshoot disks attached to the
	 GEOM framework.

Before reading this chapter, you should:
	Understand how FreeBSD treats disk devices (Chapter 17, Storage).

	Know how to configure and install a new kernel (Chapter 8, Configuring the FreeBSD Kernel).

26.3. Terminals
Contributed by Sean Kelly. Terminals provide a convenient and low-cost way to access
 a FreeBSD system when not at the computer's console or on a
 connected network. This section describes how to use terminals
 with FreeBSD.
The original UNIX® systems did not have consoles. Instead,
 users logged in and ran programs through terminals that were
 connected to the computer's serial ports.
The ability to establish a login session on a serial port
 still exists in nearly every UNIX®-like operating system
 today, including FreeBSD. By using a terminal attached to an
 unused serial port, a user can log in and run any text program
 that can normally be run on the console or in an
 xterm window.
Many terminals can be attached to a FreeBSD system. An older
 spare computer can be used as a terminal wired into a more
 powerful computer running FreeBSD. This can turn what might
 otherwise be a single-user computer into a powerful
 multiple-user system.
FreeBSD supports three types of terminals:
	Dumb terminals
	Dumb terminals are specialized hardware that connect
	 to computers over serial lines. They are called
	 “dumb” because they have only enough
	 computational power to display, send, and receive text.
	 No programs can be run on these devices. Instead, dumb
	 terminals connect to a computer that runs the needed
	 programs.
There are hundreds of kinds of dumb terminals made by
	 many manufacturers, and just about any kind will work with
	 FreeBSD. Some high-end terminals can even display graphics,
	 but only certain software packages can take advantage of
	 these advanced features.
Dumb terminals are popular in work environments where
	 workers do not need access to graphical
	 applications.

	Computers Acting as Terminals
	Since a dumb terminal has just enough ability to
	 display, send, and receive text, any spare computer can
	 be a dumb terminal. All that is needed is the proper
	 cable and some terminal emulation
	 software to run on the computer.
This configuration can be useful. For example, if one
	 user is busy working at the FreeBSD system's console, another
	 user can do some text-only work at the same time from a
	 less powerful personal computer hooked up as a terminal to
	 the FreeBSD system.
There are at least two utilities in the base-system of
	 FreeBSD that can be used to work through a serial connection:
	 cu(1) and tip(1).
For example, to connect from a client system that runs
	 FreeBSD to the serial connection of another system:
cu -l /dev/cuauN
Ports are numbered starting from zero. This means that
	 COM1 is
	 /dev/cuau0.
Additional programs are available through the Ports
	 Collection, such as
	 comms/minicom.

	X Terminals
	X terminals are the most sophisticated kind of
	 terminal available. Instead of connecting to a serial
	 port, they usually connect to a network like Ethernet.
	 Instead of being relegated to text-only applications, they
	 can display any Xorg
	 application.
This chapter does not cover the setup, configuration,
	 or use of X terminals.

26.3.1. Terminal Configuration
This section describes how to configure a FreeBSD system to
	enable a login session on a serial terminal. It assumes that
	the system recognizes the serial port to which the terminal is
	connected and that the terminal is connected with the correct
	cable.
In FreeBSD, init reads
	/etc/ttys and starts a
	getty process on the available terminals.
	The getty process is responsible for
	reading a login name and starting the login
	program. The ports on the FreeBSD system which allow logins are
	listed in /etc/ttys. For example, the
	first virtual console, ttyv0, has an
	entry in this file, allowing logins on the console. This file
	also contains entries for the other virtual consoles, serial
	ports, and pseudo-ttys. For a hardwired terminal, the serial
	port's /dev entry is listed without the
	/dev part. For example,
	/dev/ttyv0 is listed as
	ttyv0.
The default /etc/ttys configures
	support for the first four serial ports,
	ttyu0 through
	ttyu3:
ttyu0 "/usr/libexec/getty std.9600" dialup off secure
ttyu1 "/usr/libexec/getty std.9600" dialup off secure
ttyu2 "/usr/libexec/getty std.9600" dialup off secure
ttyu3 "/usr/libexec/getty std.9600" dialup off secure
When attaching a terminal to one of those ports, modify
	the default entry to set the required speed and terminal type,
	to turn the device on and, if needed, to
	change the port's secure setting. If the
	terminal is connected to another port, add an entry for the
	port.
Example 26.1, “Configuring Terminal Entries” configures two terminals in
	/etc/ttys. The first entry configures a
	Wyse-50 connected to COM2. The second
	entry configures an old computer running
	Procomm terminal software emulating
	a VT-100 terminal. The computer is connected to the sixth
	serial port on a multi-port serial card.
Example 26.1. Configuring Terminal Entries
ttyu1[image: 1] "/usr/libexec/getty std.38400"[image: 2] wy50[image: 3] on[image: 4] insecure[image: 5]
ttyu5 "/usr/libexec/getty std.19200" vt100 on insecure
	[image: 1]
	The first field specifies the device name of the
	 serial terminal.

	[image: 2]
	The second field tells getty to
	 initialize and open the line, set the line speed, prompt
	 for a user name, and then execute the
	 login program. The optional
	 getty type configures
	 characteristics on the terminal line, like
	 bps rate and parity. The available
	 getty types are listed in
	 /etc/gettytab. In almost all
	 cases, the getty types that start with
	 std will work for hardwired terminals
	 as these entries ignore parity. There is a
	 std entry for each
	 bps rate from 110 to 115200. Refer
	 to gettytab(5) for more information.
When setting the getty type, make sure to match the
	 communications settings used by the terminal. For this
	 example, the Wyse-50 uses no parity and connects at
	 38400 bps. The computer uses no parity and
	 connects at 19200 bps.

	[image: 3]
	The third field is the type of terminal. For
	 dial-up ports, unknown or
	 dialup is typically used since users
	 may dial up with practically any type of terminal or
	 software. Since the terminal type does not change for
	 hardwired terminals, a real terminal type from
	 /etc/termcap can be specified. For
	 this example, the Wyse-50 uses the real terminal type
	 while the computer running
	 Procomm is set to emulate a
	 VT-100.

	[image: 4]
	The fourth field specifies if the port should be
	 enabled. To enable logins on this port, this field must
	 be set to on.

	[image: 5]
	The final field is used to specify whether the port
	 is secure. Marking a port as secure
	 means that it is trusted enough to allow root to login from that
	 port. Insecure ports do not allow root logins. On an
	 insecure port, users must login from unprivileged
	 accounts and then use su or a similar
	 mechanism to gain superuser privileges, as described in
	 Section 3.3.1.3, “The Superuser Account”. For security
	 reasons, it is recommended to change this setting to
	 insecure.

After making any changes to
	/etc/ttys, send a SIGHUP (hangup) signal
	to the init process to force it to re-read
	its configuration file:
kill -HUP 1
Since init is always the first process
	run on a system, it always has a process ID
	of 1.
If everything is set up correctly, all cables are in
	place, and the terminals are powered up, a
	getty process should now be running on each
	terminal and login prompts should be available on each
	terminal.
26.3.2. Troubleshooting the Connection
Even with the most meticulous attention to detail,
	something could still go wrong while setting up a terminal.
	Here is a list of common symptoms and some suggested
	fixes.
If no login prompt appears, make sure the terminal is
	plugged in and powered up. If it is a personal computer
	acting as a terminal, make sure it is running terminal
	emulation software on the correct serial port.
Make sure the cable is connected firmly to both the
	terminal and the FreeBSD computer. Make sure it is the right
	kind of cable.
Make sure the terminal and FreeBSD agree on the
	bps rate and parity settings. For a video
	display terminal, make sure the contrast and brightness
	controls are turned up. If it is a printing terminal, make
	sure paper and ink are in good supply.
Use ps to make sure that a
	getty process is running and serving the
	terminal. For example, the following listing shows that a
	getty is running on the second serial port,
	ttyu1, and is using the
	std.38400 entry in
	/etc/gettytab:
ps -axww|grep ttyu
22189 d1 Is+ 0:00.03 /usr/libexec/getty std.38400 ttyu1
If no getty process is running, make
	sure the port is enabled in /etc/ttys.
	Remember to run kill -HUP 1 after modifying
	/etc/ttys.
If the getty process is running but the
	terminal still does not display a login prompt, or if it
	displays a prompt but will not accept typed input, the
	terminal or cable may not support hardware handshaking. Try
	changing the entry in /etc/ttys from
	std.38400 to
	3wire.38400, then run kill -HUP
	 1 after modifying /etc/ttys.
	The 3wire entry is similar to
	std, but ignores hardware handshaking. The
	baud rate may need to be reduced or software flow control
	enabled when using 3wire to prevent buffer
	overflows.
If garbage appears instead of a login prompt, make sure
	the terminal and FreeBSD agree on the bps rate
	and parity settings. Check the getty
	processes to make sure the correct
	getty type is in use. If not, edit
	/etc/ttys and run kill
	 -HUP 1.
If characters appear doubled and the password appears when
	typed, switch the terminal, or the terminal emulation
	software, from “half duplex” or “local
	 echo” to “full duplex.”
B.5. Operating System Internals
	Andleigh, Prabhat K. UNIX System
	 Architecture. Prentice-Hall, Inc., 1990. ISBN
	 0-13-949843-5

	Jolitz, William. “Porting UNIX to the
	 386”. Dr. Dobb's Journal.
	 January 1991-July 1992.

	Leffler, Samuel J., Marshall Kirk McKusick, Michael J
	 Karels and John Quarterman The Design and
	 Implementation of the 4.3BSD UNIX Operating
	 System. Reading, Mass. : Addison-Wesley, 1989.
	 ISBN 0-201-06196-1

	Leffler, Samuel J., Marshall Kirk McKusick,
	 The Design and Implementation of the 4.3BSD UNIX
	 Operating System: Answer Book. Reading, Mass.
	 : Addison-Wesley, 1991. ISBN 0-201-54629-9

	McKusick, Marshall Kirk, Keith Bostic, Michael J Karels,
	 and John Quarterman. The Design and
	 Implementation of the 4.4BSD Operating System.
	 Reading, Mass. : Addison-Wesley, 1996. ISBN
	 0-201-54979-4
(Chapter 2 of this book is available online
	 as part of the FreeBSD Documentation Project.)

	Marshall Kirk McKusick, George V. Neville-Neil
	 The Design and Implementation of the FreeBSD
	 Operating System. Boston, Mass. :
	 Addison-Wesley, 2004. ISBN 0-201-70245-2

	Marshall Kirk McKusick, George V. Neville-Neil,
	 Robert N. M. Watson The Design and Implementation
	 of the FreeBSD Operating System, 2nd Ed..
	 Westford, Mass. : Pearson Education, Inc., 2014.
	 ISBN 0-321-96897-2

	Stevens, W. Richard. TCP/IP Illustrated,
	 Volume 1: The Protocols. Reading, Mass. :
	 Addison-Wesley, 1996. ISBN 0-201-63346-9

	Schimmel, Curt. Unix Systems for Modern
	 Architectures. Reading, Mass. :
	 Addison-Wesley, 1994. ISBN 0-201-63338-8

	Stevens, W. Richard. TCP/IP Illustrated,
	 Volume 3: TCP for Transactions, HTTP, NNTP and the UNIX
	 Domain Protocols. Reading, Mass. :
	 Addison-Wesley, 1996. ISBN 0-201-63495-3

	Vahalia, Uresh. UNIX Internals -- The New
	 Frontiers. Prentice Hall, 1996. ISBN
	 0-13-101908-2

	Wright, Gary R. and W. Richard Stevens.
	 TCP/IP Illustrated, Volume 2: The
	 Implementation. Reading, Mass. :
	 Addison-Wesley, 1995. ISBN 0-201-63354-X

Preface
Intended
 Audience
The FreeBSD newcomer will find that the first section of this
 book guides the user through the FreeBSD installation process and
 gently introduces the concepts and conventions that underpin
 UNIX®. Working through this section requires little more than
 the desire to explore, and the ability to take on board new
 concepts as they are introduced.
Once you have traveled this far, the second, far larger,
 section of the Handbook is a comprehensive reference to all manner
 of topics of interest to FreeBSD system administrators. Some of
 these chapters may recommend that you do some prior reading, and
 this is noted in the synopsis at the beginning of each
 chapter.
For a list of additional sources of information, please see
 Appendix B, Bibliography.
Changes
 from the Third Edition
The current online version of the Handbook represents the
 cumulative effort of many hundreds of contributors over the past
 10 years. The following are some of the significant changes since
 the two volume third edition was published in 2004:
	Chapter 24, DTrace has been added with information
	about the powerful DTrace performance analysis tool.

	Chapter 20, Other File Systems has been added with
	information about non-native file systems in FreeBSD, such as ZFS
	from Sun™.

	Chapter 16, Security Event Auditing has been added to cover the new
	auditing capabilities in FreeBSD and explain its use.

	Chapter 21, Virtualization has been added with
	information about installing FreeBSD on virtualization
	software.

	Chapter 2, Installing FreeBSD has been added to cover
	installation of FreeBSD using the new installation utility,
	bsdinstall.

Changes
 from the Second Edition (2004)
The third edition was the culmination of over two years of
 work by the dedicated members of the FreeBSD Documentation
 Project. The printed edition grew to such a size that it was
 necessary to publish as two separate volumes. The following are
 the major changes in this new edition:
	Chapter 11, Configuration and Tuning has been expanded with new
	information about the ACPI power and resource management, the
	cron system utility, and more kernel tuning
	options.

	Chapter 13, Security has been expanded with new
	information about virtual private networks (VPNs), file system
	access control lists (ACLs), and security advisories.

	Chapter 15, Mandatory Access Control is a new chapter with this edition.
	It explains what MAC is and how this mechanism can be used to
	secure a FreeBSD system.

	Chapter 17, Storage has been expanded with new
	information about USB storage devices, file system snapshots,
	file system quotas, file and network backed filesystems, and
	encrypted disk partitions.

	A troubleshooting section has been added to Chapter 27, PPP.

	Chapter 28, Electronic Mail has been expanded with new
	information about using alternative transport agents, SMTP
	authentication, UUCP, fetchmail,
	procmail, and other advanced
	topics.

	Chapter 29, Network Servers is all new with this
	edition. This chapter includes information about setting up
	the Apache HTTP Server,
	ftpd, and setting up a server for
	Microsoft® Windows® clients with
	Samba. Some sections from Chapter 31, Advanced Networking were moved here to improve
	the presentation.

	Chapter 31, Advanced Networking has been expanded
	with new information about using Bluetooth® devices with
	FreeBSD, setting up wireless networks, and Asynchronous Transfer
	Mode (ATM) networking.

	A glossary has been added to provide a central location
	for the definitions of technical terms used throughout the
	book.

	A number of aesthetic improvements have been made to the
	tables and figures throughout the book.

Changes from
 the First Edition (2001)
The second edition was the culmination of over two years of
 work by the dedicated members of the FreeBSD Documentation Project.
 The following were the major changes in this edition:
	A complete Index has been added.

	All ASCII figures have been replaced by graphical
	 diagrams.

	A standard synopsis has been added to each chapter to
	 give a quick summary of what information the chapter
	 contains, and what the reader is expected to know.

	The content has been logically reorganized into three
	 parts: “Getting Started”, “System
	 Administration”, and
	 “Appendices”.

	Chapter 3, FreeBSD Basics has been expanded to contain
	 additional information about processes, daemons, and
	 signals.

	Chapter 4, Installing Applications: Packages and Ports has been expanded to contain
	 additional information about binary package
	 management.

	Chapter 5, The X Window System has been completely rewritten with
	 an emphasis on using modern desktop technologies such as
	 KDE and
	 GNOME on XFree86™ 4.X.

	Chapter 12, The FreeBSD Booting Process has been expanded.

	Chapter 17, Storage has been written from what used
	 to be two separate chapters on “Disks” and
	 “Backups”. We feel that the topics are easier
	 to comprehend when presented as a single chapter. A section
	 on RAID (both hardware and software) has also been
	 added.

	Chapter 26, Serial Communications has been completely
	 reorganized and updated for FreeBSD 4.X/5.X.

	Chapter 27, PPP has been substantially
	 updated.

	Many new sections have been added to Chapter 31, Advanced Networking.

	Chapter 28, Electronic Mail has been expanded to include more
	 information about configuring
	 sendmail.

	Chapter 10, Linux® Binary Compatibility has been expanded to include
	 information about installing
	 Oracle® and
	 SAP® R/3®.

	The following new topics are covered in this second
	 edition:
	Chapter 11, Configuration and Tuning.

	Chapter 7, Multimedia.

Organization of This Book
This book is split into five logically distinct sections.
 The first section, Getting Started, covers
 the installation and basic usage of FreeBSD. It is expected that
 the reader will follow these chapters in sequence, possibly
 skipping chapters covering familiar topics. The second section,
 Common Tasks, covers some frequently used
 features of FreeBSD. This section, and all subsequent sections,
 can be read out of order. Each chapter begins with a succinct
 synopsis that describes what the chapter covers and what the
 reader is expected to already know. This is meant to allow the
 casual reader to skip around to find chapters of interest. The
 third section, System Administration, covers
 administration topics. The fourth section, Network
 Communication, covers networking and server topics.
 The fifth section contains appendices of reference
 information.
	Chapter 1, Introduction
	Introduces FreeBSD to a new user. It describes the
	 history of the FreeBSD Project, its goals and development
	 model.

	Chapter 2, Installing FreeBSD
	Walks a user through the entire installation process of
	 FreeBSD 9.x and later using
	 bsdinstall.

	Chapter 3, FreeBSD Basics
	Covers the basic commands and functionality of the
	 FreeBSD operating system. If you are familiar with Linux®
	 or another flavor of UNIX® then you can probably skip this
	 chapter.

	Chapter 4, Installing Applications: Packages and Ports
	Covers the installation of third-party software with
	 both FreeBSD's innovative “Ports Collection” and
	 standard binary packages.

	Chapter 5, The X Window System
	Describes the X Window System in general and using X11
	 on FreeBSD in particular. Also describes common desktop
	 environments such as KDE and
	 GNOME.

	Chapter 6, Desktop Applications
	Lists some common desktop applications, such as web
	 browsers and productivity suites, and describes how to
	 install them on FreeBSD.

	Chapter 7, Multimedia
	Shows how to set up sound and video playback support
	 for your system. Also describes some sample audio and video
	 applications.

	Chapter 8, Configuring the FreeBSD Kernel
	Explains why you might need to configure a new kernel
	 and provides detailed instructions for configuring,
	 building, and installing a custom kernel.

	Chapter 9, Printing
	Describes managing printers on FreeBSD, including
	 information about banner pages, printer accounting, and
	 initial setup.

	Chapter 10, Linux® Binary Compatibility
	Describes the Linux® compatibility features of FreeBSD.
	 Also provides detailed installation instructions for many
	 popular Linux® applications such as
	 Oracle® and
	 Mathematica®.

	Chapter 11, Configuration and Tuning
	Describes the parameters available for system
	 administrators to tune a FreeBSD system for optimum
	 performance. Also describes the various configuration files
	 used in FreeBSD and where to find them.

	Chapter 12, The FreeBSD Booting Process
	Describes the FreeBSD boot process and explains how to
	 control this process with configuration options.

	Chapter 13, Security
	Describes many different tools available to help keep
	 your FreeBSD system secure, including Kerberos, IPsec and
	 OpenSSH.

	Chapter 14, Jails
	Describes the jails framework, and the improvements of
	 jails over the traditional chroot support of FreeBSD.

	Chapter 15, Mandatory Access Control
	Explains what Mandatory Access Control (MAC) is and
	 how this mechanism can be used to secure a FreeBSD
	 system.

	Chapter 16, Security Event Auditing
	Describes what FreeBSD Event Auditing is, how it can be
	 installed, configured, and how audit trails can be inspected
	 or monitored.

	Chapter 17, Storage
	Describes how to manage storage media and filesystems
	 with FreeBSD. This includes physical disks, RAID arrays,
	 optical and tape media, memory-backed disks, and network
	 filesystems.

	Chapter 18, GEOM: Modular Disk Transformation Framework
	Describes what the GEOM framework in FreeBSD is and how
	 to configure various supported RAID levels.

	Chapter 20, Other File Systems
	Examines support of non-native file systems in FreeBSD,
	 like the Z File System from Sun™.

	Chapter 21, Virtualization
	Describes what virtualization systems offer, and how
	 they can be used with FreeBSD.

	Chapter 22, Localization -
 i18n/L10n Usage and
 Setup
	Describes how to use FreeBSD in languages other than
	 English. Covers both system and application level
	 localization.

	Chapter 23, Updating and Upgrading FreeBSD
	Explains the differences between FreeBSD-STABLE,
	 FreeBSD-CURRENT, and FreeBSD releases. Describes which users
	 would benefit from tracking a development system and
	 outlines that process. Covers the methods users may take
	 to update their system to the latest security
	 release.

	Chapter 24, DTrace
	Describes how to configure and use the DTrace tool
	 from Sun™ in FreeBSD. Dynamic tracing can help locate
	 performance issues, by performing real time system
	 analysis.

	Chapter 26, Serial Communications
	Explains how to connect terminals and modems to your
	 FreeBSD system for both dial in and dial out
	 connections.

	Chapter 27, PPP
	Describes how to use PPP to connect to remote systems
	 with FreeBSD.

	Chapter 28, Electronic Mail
	Explains the different components of an email server
	 and dives into simple configuration topics for the most
	 popular mail server software:
	 sendmail.

	Chapter 29, Network Servers
	Provides detailed instructions and example configuration
	 files to set up your FreeBSD machine as a network filesystem
	 server, domain name server, network information system
	 server, or time synchronization server.

	Chapter 30, Firewalls
	Explains the philosophy behind software-based firewalls
	 and provides detailed information about the configuration
	 of the different firewalls available for FreeBSD.

	Chapter 31, Advanced Networking
	Describes many networking topics, including sharing an
	 Internet connection with other computers on your LAN,
	 advanced routing topics, wireless networking, Bluetooth®,
	 ATM, IPv6, and much more.

	Appendix A, Obtaining FreeBSD
	Lists different sources for obtaining FreeBSD media on
	 CDROM or DVD as well as different sites on the Internet
	 that allow you to download and install FreeBSD.

	Appendix B, Bibliography
	This book touches on many different subjects that may
	 leave you hungry for a more detailed explanation. The
	 bibliography lists many excellent books that are referenced
	 in the text.

	Appendix C, Resources on the Internet
	Describes the many forums available for FreeBSD users to
	 post questions and engage in technical conversations about
	 FreeBSD.

	Appendix D, OpenPGP Keys
	Lists the PGP fingerprints of several FreeBSD
	 Developers.

Conventions used
 in this book
To provide a consistent and easy to read text, several
 conventions are followed throughout the book.
Typographic Conventions
	Italic
	An italic font is used for
	 filenames, URLs, emphasized text, and the first usage of
	 technical terms.

	Monospace
	A monospaced font is used for error
	 messages, commands, environment variables, names of ports,
	 hostnames, user names, group names, device names, variables,
	 and code fragments.

	Bold
	A bold font is used for
	 applications, commands, and keys.

User
 Input
Keys are shown in bold to stand out from
 other text. Key combinations that are meant to be typed
 simultaneously are shown with `+' between
 the keys, such as:

 Ctrl+Alt+Del
Meaning the user should type the Ctrl,
 Alt, and Del keys at the same
 time.
Keys that are meant to be typed in sequence will be separated
 with commas, for example:

 Ctrl+X,
 Ctrl+S
Would mean that the user is expected to type the
 Ctrl and X keys simultaneously
 and then to type the Ctrl and S
 keys simultaneously.
Examples
Examples starting with C:\>
 indicate a MS-DOS® command. Unless otherwise noted, these
 commands may be executed from a “Command Prompt”
 window in a modern Microsoft® Windows®
 environment.
E:\> tools\fdimage floppies\kern.flp A:
Examples starting with # indicate a command that
 must be invoked as the superuser in FreeBSD. You can login as
 root to type the
 command, or login as your normal account and use su(1) to
 gain superuser privileges.
dd if=kern.flp of=/dev/fd0
Examples starting with % indicate a command that
 should be invoked from a normal user account. Unless otherwise
 noted, C-shell syntax is used for setting environment variables
 and other shell commands.
% top
Acknowledgments
The book you are holding represents the efforts of many
 hundreds of people around the world. Whether they sent in fixes
 for typos, or submitted complete chapters, all the contributions
 have been useful.
Several companies have supported the development of this
 document by paying authors to work on it full-time, paying for
 publication, etc. In particular, BSDi (subsequently acquired by
 Wind River
 Systems) paid members of the FreeBSD Documentation Project
 to work on improving this book full time leading up to the
 publication of the first printed edition in March 2000 (ISBN
 1-57176-241-8). Wind River Systems then paid several additional
 authors to make a number of improvements to the print-output
 infrastructure and to add additional chapters to the text. This
 work culminated in the publication of the second printed edition
 in November 2001 (ISBN 1-57176-303-1). In 2003-2004, FreeBSD Mall, Inc,
 paid several contributors to improve the Handbook in preparation
 for the third printed edition.
3.9. Shells
A shell provides a command line
 interface for interacting with the operating system. A shell
 receives commands from the input channel and executes them.
 Many shells provide built in functions to help with everyday
 tasks such as file management, file globbing, command line
 editing, command macros, and environment variables. FreeBSD comes
 with several shells, including the Bourne shell (sh(1)) and
 the extended C shell (tcsh(1)). Other shells are available
 from the FreeBSD Ports Collection, such as
 zsh and bash.
The shell that is used is really a matter of taste. A C
 programmer might feel more comfortable with a C-like shell such
 as tcsh(1). A Linux® user might prefer
 bash. Each shell has unique properties that
 may or may not work with a user's preferred working environment,
 which is why there is a choice of which shell to use.
One common shell feature is filename completion. After a
 user types the first few letters of a command or filename and
 presses Tab, the shell completes the rest of
 the command or filename. Consider two files called
 foobar and football.
 To delete foobar, the user might type
 rm foo and press Tab to
 complete the filename.
But the shell only shows rm foo. It was
 unable to complete the filename because both
 foobar and football
 start with foo. Some shells sound a beep or
 show all the choices if more than one name matches. The user
 must then type more characters to identify the desired filename.
 Typing a t and pressing Tab
 again is enough to let the shell determine which filename is
 desired and fill in the rest.
Another feature of the shell is the use of environment
 variables. Environment variables are a variable/key pair stored
 in the shell's environment. This environment can be read by any
 program invoked by the shell, and thus contains a lot of program
 configuration. Table 3.4, “Common Environment Variables” provides a list
 of common environment variables and their meanings. Note that
 the names of environment variables are always in
 uppercase.
Table 3.4. Common Environment Variables
	Variable	Description
	USER	Current logged in user's name.
	PATH	Colon-separated list of directories to search for
	 binaries.
	DISPLAY	Network name of the
	 Xorg
	 display to connect to, if available.
	SHELL	The current shell.
	TERM	The name of the user's type of terminal. Used to
	 determine the capabilities of the terminal.
	TERMCAP	Database entry of the terminal escape codes to
	 perform various terminal functions.
	OSTYPE	Type of operating system.
	MACHTYPE	The system's CPU architecture.
	EDITOR	The user's preferred text editor.
	PAGER	The user's preferred utility for viewing text one
	 page at a time.
	MANPATH	Colon-separated list of directories to search for
	 manual pages.

How to set an environment variable differs between shells.
 In tcsh(1) and csh(1), use
 setenv to set environment variables. In
 sh(1) and bash, use
 export to set the current environment
 variables. This example sets the default EDITOR
 to /usr/local/bin/emacs for the
 tcsh(1) shell:
% setenv EDITOR /usr/local/bin/emacs
The equivalent command for bash
 would be:
% export EDITOR="/usr/local/bin/emacs"
To expand an environment variable in order to see its
 current setting, type a $ character in front
 of its name on the command line. For example,
 echo $TERM displays the current
 $TERM setting.
Shells treat special characters, known as meta-characters,
 as special representations of data. The most common
 meta-character is *, which represents any
 number of characters in a filename. Meta-characters can be used
 to perform filename globbing. For example, echo
	* is equivalent to ls because
 the shell takes all the files that match *
 and echo lists them on the command
 line.
To prevent the shell from interpreting a special character,
 escape it from the shell by starting it with a backslash
 (\). For example, echo
	$TERM prints the terminal setting whereas
 echo \$TERM literally prints the string
 $TERM.
3.9.1. Changing the Shell
The easiest way to permanently change the default shell is
	to use chsh. Running this command will
	open the editor that is configured in the
	EDITOR environment variable, which by default
	is set to vi(1). Change the Shell:
	line to the full path of the new shell.
Alternately, use chsh -s which will set
	the specified shell without opening an editor. For example,
	to change the shell to bash:
% chsh -s /usr/local/bin/bash
Note:
The new shell must be present in
	 /etc/shells. If the shell was
	 installed from the FreeBSD Ports Collection as described in
	 Chapter 4, Installing Applications: Packages and Ports, it should be automatically added
	 to this file. If it is missing, add it using this command,
	 replacing the path with the path of the shell:
echo /usr/local/bin/bash >> /etc/shells
Then, rerun chsh(1).

3.9.2. Advanced Shell Techniques
Written by Tom Rhodes. The UNIX® shell is not just a command interpreter, it
	acts as a powerful tool which allows users to execute
	commands, redirect their output, redirect their input and
	chain commands together to improve the final command output.
	When this functionality is mixed with built in commands, the
	user is provided with an environment that can maximize
	efficiency.
Shell redirection is the action of sending the output or
	the input of a command into another command or into a file.
	To capture the output of the ls(1) command, for example,
	into a file, redirect the output:
% ls > directory_listing.txt
The directory contents will now be listed in
	directory_listing.txt. Some commands can
	be used to read input, such as sort(1). To sort this
	listing, redirect the input:
% sort < directory_listing.txt
The input will be sorted and placed on the screen. To
	redirect that input into another file, one could redirect the
	output of sort(1) by mixing the direction:
% sort < directory_listing.txt > sorted.txt
In all of the previous examples, the commands are
	performing redirection using file descriptors. Every UNIX®
	system has file descriptors, which include standard input
	(stdin), standard output (stdout), and standard error
	(stderr). Each one has a purpose, where input could be a
	keyboard or a mouse, something that provides input. Output
	could be a screen or paper in a printer. And error would be
	anything that is used for diagnostic or error messages. All
	three are considered I/O based file
	descriptors and sometimes considered streams.
Through the use of these descriptors, the shell allows
	output and input to be passed around through various commands
	and redirected to or from a file. Another method of
	redirection is the pipe operator.
The UNIX® pipe operator, “|” allows the
	output of one command to be directly passed or directed to
	another program. Basically, a pipe allows the standard
	output of a command to be passed as standard input to another
	command, for example:
% cat directory_listing.txt | sort | less
In that example, the contents of
	directory_listing.txt will be sorted and
	the output passed to less(1). This allows the user to
	scroll through the output at their own pace and prevent it
	from scrolling off the screen.
30.6. Blacklistd
Blacklistd is a daemon listening to sockets to receive
 notifications from other daemons about connection attempts
 that failed or were successful. It is most widely used in
 blocking too many connection attempts on open ports. A
 prime example is SSH running on
 the internet getting a lot of requests from bots or scripts
 trying to guess passwords and gain access. Using
 blacklistd, the daemon can notify
 the firewall to create a filter rule to block excessive
 connection attempts from a single source after a number of
 tries. Blacklistd was first developed on
 NetBSD and appeared there in version 7. FreeBSD 11
 imported blacklistd from NetBSD.
This chapter describes how to set up blacklistd,
 configure it, and provides examples on how to use it.
 Readers should be familiar with basic firewall concepts like
 rules. For details, refer to the firewall chapter. PF is
 used in the examples, but other firewalls available on
 FreeBSD should be able to work with blacklistd, too.
30.6.1. Enabling Blacklistd
The main configuration for blacklistd is stored in
	blacklistd.conf(5). Various command line options are
	also available to change blacklistd's run-time behavior.
	Persistent configuration across reboots should be stored
	in /etc/blacklistd.conf. To enable
	the daemon during system boot, add a
	blacklistd_enable line to
	/etc/rc.conf like this:
sysrc blacklistd_enable=yes
To start the service manually, run this command:
service blacklistd start
30.6.2. Creating a Blacklistd Ruleset
Rules for blacklistd are configured in
	blacklistd.conf(5) with one entry per line. Each
	rule contains a tuple separated by spaces or tabs. Rules
	either belong to a local or a
	remote, which applies to the machine
	where blacklistd is running or an outside source,
	respectively.
30.6.2.1. Local Rules
An example blacklistd.conf entry for a local rule
	 looks like this:
[local]
ssh stream * * * 3 24h
All rules that follow the [local]
	 section are treated as local rules (which is the
	 default), applying to the local machine. When a
	 [remote] section is encountered, all
	 rules that follow it are handled as remote machine
	 rules.
Seven fields define a rule separated by either tabs
	 or spaces. The first four fields identify the traffic
	 that should be blacklisted. The three fields that
	 follow define backlistd's behavior. Wildcards are
	 denoted as asterisks (*), matching
	 anything in this field. The first field defines the
	 location. In local rules, these are the network ports.
	 The syntax for the location field is as follows:
[address|interface][/mask][:port]
Adressses can be specified as IPv4 in numeric format
	 or IPv6 in square brackets. An interface name like
	 em0 can also
	 be used.
The socket type is defined by the second field. TCP
	 sockets are of type stream, whereas UDP
	 is denoted as dgram. The example above
	 uses TCP, since SSH is using that protocol.
A protocol can be used in the third field of a
	 blacklistd rule. The following protocols can be used:
	 tcp, udp,
	 tcp6, udp6, or
	 numeric. A wildcard, like in the example, is typically
	 used to match all protocols unless there is a reason to
	 distinguish traffic by a certain protocol.
In the fourth field, the effective user or owner of
	 the daemon process that is reporting the event is defined.
	 The username or UID can be used here,
	 as well as a wildcard (see example rule above).
The packet filter rule name is declared by the fifth
	 field, which starts the behavior part of the rule. By
	 default, blacklistd puts all blocks under a pf anchor
	 called blacklistd in
	 pf.conf like this:
anchor "blacklistd/*" in on $ext_if
block in
pass out
For separate blacklists, an anchor name can be used in
	 this field. In other cases, the wildcard will suffice.
	 When a name starts with a hyphen (-) it
	 means that an anchor with the default rule name prepended
	 should be used. A modified example from the above using
	 the hyphen would look like this:
ssh stream * * -ssh 3 24h
With such a rule, any new blacklist rules are added to
	 an anchor called blacklistd-ssh.
To block whole subnets for a single rule violation, a
	 / in the rule name can be used. This
	 causes the remaining portion of the name to be interpreted
	 as the mask to be applied to the address specified in
	 the rule. For example, this rule would block every
	 address adjoining /24.
22 stream tcp * */24 3 24h
Note:
It is important to specify the proper
	 protocol here. IPv4 and IPv6 treat /24 differently,
	 that is the reason why * cannot be
	 used in the third field for this rule.

This rule defines that if any one host in that network
	 is misbehaving, everything else on that network will be
	 blocked, too.
The sixth field, called nfail, sets
	 the number of login failures required to blacklist the
	 remote IP in question. When a wildcard is used at this
	 position, it means that blocks will never happen. In the
	 example rule above, a limit of three is defined meaning
	 that after three attempts to log into
	 SSH on one connection, the IP
	 is blocked.
The last field in a blacklistd rule definition
	 specifies how long a host is blacklisted. The default
	 unit is seconds, but suffixes like m,
	 h, and d can also be
	 specified for minutes, hours, and days,
	 respectively.
The example rule in its entirety means that after
	 three times authenticating to
	 SSH will result in a new PF
	 block rule for that host. Rule matches are performed by
	 first checking local rules one after another, from most
	 specific to least specific. When a match occurs, the
	 remote rules are applied and the name,
	 nfail, and disable fields are changed
	 by the remote rule that matched.
30.6.2.2. Remote Rules
Remote rules are used to specify how blacklistd
	 changes its behavior depending on the remote host
	 currently being evaluated. Each field in a remote rule
	 is the same as in a local rule. The only difference is
	 in the way blacklistd is using them. To explain it,
	 this example rule is used:
[remote]
203.0.113.128/25 * * * =/25 = 48h
The address field can be an IP address (either v4 or
	 v6), a port or both. This allows setting special rules
	 for a specific remote address range like in this example.
	 The fields for type, protocol and owner are identically
	 interpreted as in the local rule.
The name fields is different though: the equal sign
	 (=) in a remote rule tells blacklistd
	 to use the value from the matching local rule. It means
	 that the firewall rule entry is taken and the
	 /25 prefix (a
	 netmask of 255.255.255.128) is added.
	 When a connection from that address range is blacklisted,
	 the entire subnet is affected. A PF anchor name can also
	 be used here, in which case blacklistd will add rules for
	 this address block to the anchor of that name. The
	 default table is used when a wildcard is specified.
A custom number of failures in the
	 nfail column can be defined for an
	 address. This is useful for exceptions to a specific
	 rule, to maybe allow someone a less strict application
	 of rules or a bit more leniency in login tries.
	 Blocking is disabled when an asterisk is used in this
	 sixth field.
Remote rules allow a stricter enforcement of limits
	 on attempts to log in compared to attempts coming from a
	 local network like an office.
30.6.3. Blacklistd Client Configuration
There are a few software packages in FreeBSD that can
	 utilize blacklistd's functionality. The two most
	 prominent ones are ftpd(8) and sshd(8) to block
	 excessive connection attempts. To activate blacklistd in
	 the SSH daemon, add the following line to
	 /etc/ssh/sshd_config:
UseBlacklist yes
Restart sshd afterwards to make these changes take
	 effect.
Blacklisting for ftpd(8) is enabled using
	 -B, either in
	 /etc/inetd.conf or as a
	 flag in /etc/rc.conf like
	 this:
ftpd_flags="-B"
That is all that is needed to make these programs
	 talk to blacklistd.
30.6.4. Blacklistd Management
Blacklistd provides the user with a management utility
	 called blacklistctl(8). It displays blocked
	 addresses and networks that are blacklisted by the rules
	 defined in blacklistd.conf(5). To see the
	 list of currently blocked hosts, use
	 dump combined with -b
	 like this.
blacklistctl dump -b
 address/ma:port id nfail last access
213.0.123.128/25:22 OK 6/3 2019/06/08 14:30:19
This example shows that there were 6 out of three
	 permitted attempts on port 22 coming from the address
	 range 213.0.123.128/25. There
	 are more attempts listed than are allowed because SSH
	 allows a client to try multiple logins on a single TCP
	 connection. A connection that is currently going on is
	 not stopped by blacklistd. The last connection attempt is
	 listed in the last access column of the
	 output.
To see the remaining time that this host will be on
	 the blacklist, add -r to the previous
	 command.
blacklistctl dump -br
 address/ma:port id nfail remaining time
213.0.123.128/25:22 OK 6/3 36s
In this example, there are 36s seconds left until this
	 host will not be blocked any more.
30.6.5. Removing Hosts from the Block List
Sometimes it is necessary to remove a host from the
	 block list before the remaining time expires.
	 Unfortunately, there is no functionality in blacklistd to
	 do that. However, it is possible to remove the address
	 from the PF table using pfctl. For each blocked port,
	 there is a child anchor inside the blacklistd anchor
	 defined in /etc/pf.conf. For
	 example, if there is a child anchor for blocking port 22
	 it is called blacklistd/22. There is a
	 table inside that child anchor that contains the blocked
	 addresses. This table is called port followed by the port
	 number. In this example, it would be called
	 port22. With that information at hand,
	 it is now possible to use pfctl(8) to display all
	 addresses listed like this:
pfctl -a blacklistd/22 -t port22 -T show
...
213.0.123.128/25
...
After identifying the address to be unblocked from the
	 list, the following command removes it from the list:
pfctl -a blacklistd/22 -t port22 -T delete 213.0.123.128/25
The address is now removed from PF, but will still
	 show up in the blacklistctl list, since it does not know
	 about any changes made in PF. The entry in blacklistd's
	 database will eventually expire and be removed from its
	 output eventually. The entry will be added again if the
	 host is matching one of the block rules in blacklistd
	 again.
5.4. Xorg Configuration
Originally contributed by Warren Block. 5.4.1. Quick Start
Xorg supports most common
	video cards, keyboards, and pointing devices.
Tip:
Video cards, monitors, and input devices are
	 automatically detected and do not require any manual
	 configuration. Do not create xorg.conf
	 or run a -configure step unless automatic
	 configuration fails.

	If Xorg has been used on
	 this computer before, move or remove any existing
	 configuration files:
mv /etc/X11/xorg.conf ~/xorg.conf.etc
mv /usr/local/etc/X11/xorg.conf ~/xorg.conf.localetc

	Add the user who will run
	 Xorg to the
	 video or
	 wheel group to enable 3D acceleration
	 when available. To add user
	 jru to whichever group is
	 available:
pw groupmod video -m jru || pw groupmod wheel -m jru

	The twm window manager is included
	 by default. It is started when
	 Xorg starts:
% startx

	On some older versions of FreeBSD, the system console
	 must be set to vt(4) before switching back to the
	 text console will work properly. See
	 Section 5.4.3, “Kernel Mode Setting (KMS)”.

5.4.2. User Group for Accelerated Video
Access to /dev/dri is needed to allow
	3D acceleration on video cards. It is usually simplest to add
	the user who will be running X to either the
	video or wheel group.
	Here, pw(8) is used to add user
	slurms to the
	video group, or to the
	wheel group if there is no
	video group:
pw groupmod video -m slurms || pw groupmod wheel -m slurms
5.4.3. Kernel Mode Setting (KMS)
When the computer switches from displaying the console to
	a higher screen resolution for X, it must set the video
	output mode. Recent versions of
	Xorg use a system inside the kernel to do
	these mode changes more efficiently. Older versions of FreeBSD
	use sc(4), which is not aware of the
	KMS system. The end result is that after
	closing X, the system console is blank, even though it is
	still working. The newer vt(4) console avoids this
	problem.
Add this line to /boot/loader.conf
	to enable vt(4):
kern.vty=vt
5.4.4. Configuration Files
Manual configuration is usually not necessary. Please do
	not manually create configuration files unless
	autoconfiguration does not work.
5.4.4.1. Directory
Xorg looks in several
	 directories for configuration files.
	 /usr/local/etc/X11/ is the recommended
	 directory for these files on FreeBSD. Using this directory
	 helps keep application files separate from operating system
	 files.
Storing configuration files in the legacy
	 /etc/X11/ still works. However, this
	 mixes application files with the base FreeBSD files and is not
	 recommended.
5.4.4.2. Single or Multiple Files
It is easier to use multiple files that each configure a
	 specific setting than the traditional single
	 xorg.conf. These files are stored in
	 the xorg.conf.d/ subdirectory of the
	 main configuration file directory. The full path is
	 typically
	 /usr/local/etc/X11/xorg.conf.d/.
Examples of these files are shown later in this
	 section.
The traditional single xorg.conf
	 still works, but is neither as clear nor as flexible as
	 multiple files in the xorg.conf.d/
	 subdirectory.
5.4.5. Video Cards
Because of changes made in recent versions of FreeBSD, it
	is now possible to use graphics drivers provided by the Ports
	framework or as packages. As such, users can use one of the
	following drivers available from
	graphics/drm-kmod.
	Intel KMS driver
Radeon KMS driver
AMD KMS driver
	2D and 3D acceleration is supported on most
	 Intel KMS driver graphics cards provided by Intel.
Driver name: i915kms
2D and 3D acceleration is supported on most older
	 Radeon KMS driver graphics cards provided by AMD.
Driver name: radeonkms
2D and 3D acceleration is supported on most newer
	 AMD KMS driver graphics cards provided by AMD.
Driver name: amdgpu
For reference, please see https://en.wikipedia.org/wiki/List_of_Intel_graphics_processing_units
	 or https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units
	 for a list of supported GPUs.

	Intel®
	3D acceleration is supported on most Intel®
	 graphics up to Ivy Bridge (HD Graphics 2500, 4000, and
	 P4000), including Iron Lake (HD Graphics) and
	 Sandy Bridge (HD Graphics 2000).
Driver name: intel
For reference, see https://en.wikipedia.org/wiki/List_of_Intel_graphics_processing_units.

	AMD® Radeon
	2D and 3D acceleration is supported on Radeon
	 cards up to and including the HD6000 series.
Driver name: radeon
For reference, see https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units.

	NVIDIA
	Several NVIDIA drivers are available in the
	 x11 category of the Ports
	 Collection. Install the driver that matches the video
	 card.
For reference, see https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units.

	Hybrid Combination Graphics
	Some notebook computers add additional graphics
	 processing units to those built into the chipset or
	 processor. Optimus combines
	 Intel® and NVIDIA hardware.
	 Switchable Graphics or
	 Hybrid Graphics are a combination
	 of an Intel® or AMD® processor and an AMD® Radeon
	 GPU.
Implementations of these hybrid graphics systems
	 vary, and Xorg on FreeBSD is
	 not able to drive all versions of them.
Some computers provide a BIOS
	 option to disable one of the graphics adapters or select
	 a discrete mode which can be used
	 with one of the standard video card drivers. For
	 example, it is sometimes possible to disable the NVIDIA
	 GPU in an Optimus system. The
	 Intel® video can then be used with an Intel®
	 driver.
BIOS settings depend on the model
	 of computer. In some situations, both
	 GPUs can be left enabled, but
	 creating a configuration file that only uses the main
	 GPU in the Device
	 section is enough to make such a system
	 functional.

	Other Video Cards
	Drivers for some less-common video cards can be
	 found in the x11-drivers directory
	 of the Ports Collection.
Cards that are not supported by a specific driver
	 might still be usable with the
	 x11-drivers/xf86-video-vesa driver.
	 This driver is installed by x11/xorg.
	 It can also be installed manually as
	 x11-drivers/xf86-video-vesa.
	 Xorg attempts to use this
	 driver when a specific driver is not found for the video
	 card.
x11-drivers/xf86-video-scfb is a
	 similar nonspecialized video driver that works on many
	 UEFI and ARM® computers.

	Setting the Video Driver in a File
	To set the Intel® driver in a configuration
	 file:
Example 5.1. Select Intel® Video Driver in a File
/usr/local/etc/X11/xorg.conf.d/driver-intel.conf
Section "Device"
	Identifier "Card0"
	Driver "intel"
	# BusID "PCI:1:0:0"
EndSection
If more than one video card is present, the
		BusID identifier can be uncommented
		and set to select the desired card. A list of video
		card bus IDs can be displayed with
		pciconf -lv | grep -B3
		 display.

To set the Radeon driver in a configuration
	 file:
Example 5.2. Select Radeon Video Driver in a File
/usr/local/etc/X11/xorg.conf.d/driver-radeon.conf
Section "Device"
	Identifier "Card0"
	Driver "radeon"
EndSection

To set the VESA driver in a
	 configuration file:
Example 5.3. Select VESA Video Driver in a
		File
/usr/local/etc/X11/xorg.conf.d/driver-vesa.conf
Section "Device"
	Identifier "Card0"
	Driver "vesa"
EndSection

To set the scfb driver for use
	 with a UEFI or ARM® computer:
Example 5.4. Select scfb Video Driver in a
		File
/usr/local/etc/X11/xorg.conf.d/driver-scfb.conf
Section "Device"
	Identifier "Card0"
	Driver "scfb"
EndSection

5.4.6. Monitors
Almost all monitors support the Extended Display
	Identification Data standard (EDID).
	Xorg uses EDID
	to communicate with the monitor and detect the supported
	resolutions and refresh rates. Then it selects the most
	appropriate combination of settings to use with that
	monitor.
Other resolutions supported by the monitor can be
	chosen by setting the desired resolution in configuration
	files, or after the X server has been started with
	xrandr(1).
	Using xrandr(1)
	Run xrandr(1) without any parameters to see a
	 list of video outputs and detected monitor modes:
% xrandr
Screen 0: minimum 320 x 200, current 3000 x 1920, maximum 8192 x 8192
DVI-0 connected primary 1920x1200+1080+0 (normal left inverted right x axis y axis) 495mm x 310mm
 1920x1200 59.95*+
 1600x1200 60.00
 1280x1024 85.02 75.02 60.02
 1280x960 60.00
 1152x864 75.00
 1024x768 85.00 75.08 70.07 60.00
 832x624 74.55
 800x600 75.00 60.32
 640x480 75.00 60.00
 720x400 70.08
DisplayPort-0 disconnected (normal left inverted right x axis y axis)
HDMI-0 disconnected (normal left inverted right x axis y axis)
This shows that the DVI-0 output
	 is being used to display a screen resolution of
	 1920x1200 pixels at a refresh rate of about 60 Hz.
	 Monitors are not attached to the
	 DisplayPort-0 and
	 HDMI-0 connectors.
Any of the other display modes can be selected with
	 xrandr(1). For example, to switch to 1280x1024 at
	 60 Hz:
% xrandr --mode 1280x1024 --rate 60
A common task is using the external video output on
	 a notebook computer for a video projector.
The type and quantity of output connectors varies
	 between devices, and the name given to each output
	 varies from driver to driver. What one driver calls
	 HDMI-1, another might call
	 HDMI1. So the first step is to run
	 xrandr(1) to list all the available
	 outputs:
% xrandr
Screen 0: minimum 320 x 200, current 1366 x 768, maximum 8192 x 8192
LVDS1 connected 1366x768+0+0 (normal left inverted right x axis y axis) 344mm x 193mm
 1366x768 60.04*+
 1024x768 60.00
 800x600 60.32 56.25
 640x480 59.94
VGA1 connected (normal left inverted right x axis y axis)
 1280x1024 60.02 + 75.02
 1280x960 60.00
 1152x864 75.00
 1024x768 75.08 70.07 60.00
 832x624 74.55
 800x600 72.19 75.00 60.32 56.25
 640x480 75.00 72.81 66.67 60.00
 720x400 70.08
HDMI1 disconnected (normal left inverted right x axis y axis)
DP1 disconnected (normal left inverted right x axis y axis)
Four outputs were found: the built-in panel
	 LVDS1, and external
	 VGA1, HDMI1, and
	 DP1 connectors.
The projector has been connected to the
	 VGA1 output. xrandr(1) is now
	 used to set that output to the native resolution of the
	 projector and add the additional space to the right side
	 of the desktop:
% xrandr --output VGA1 --auto --right-of LVDS1
--auto chooses the resolution and
	 refresh rate detected by EDID. If
	 the resolution is not correctly detected, a fixed value
	 can be given with --mode instead of
	 the --auto statement. For example,
	 most projectors can be used with a 1024x768 resolution,
	 which is set with
	 --mode 1024x768.
xrandr(1) is often run from
	 .xinitrc to set the appropriate
	 mode when X starts.

	Setting Monitor Resolution in a File
	To set a screen resolution of 1024x768 in a
	 configuration file:
Example 5.5. Set Screen Resolution in a File
/usr/local/etc/X11/xorg.conf.d/screen-resolution.conf
Section "Screen"
	Identifier "Screen0"
	Device "Card0"
	SubSection "Display"
	Modes "1024x768"
	EndSubSection
EndSection

The few monitors that do not have
	 EDID can be configured by setting
	 HorizSync and
	 VertRefresh to the range of
	 frequencies supported by the monitor.
Example 5.6. Manually Setting Monitor Frequencies
/usr/local/etc/X11/xorg.conf.d/monitor0-freq.conf
Section "Monitor"
	Identifier "Monitor0"
	HorizSync 30-83 # kHz
	VertRefresh 50-76 # Hz
EndSection

5.4.7. Input Devices
5.4.7.1. Keyboards
	Keyboard Layout
	The standardized location of keys on a keyboard
		is called a layout. Layouts and
		other adjustable parameters are listed in
		xkeyboard-config(7).
A United States layout is the default. To select
		an alternate layout, set the
		XkbLayout and
		XkbVariant options in an
		InputClass. This will be applied
		to all input devices that match the class.
This example selects a French keyboard
		layout.
Example 5.7. Setting a Keyboard Layout
/usr/local/etc/X11/xorg.conf.d/keyboard-fr.conf
Section	"InputClass"
	Identifier	"KeyboardDefaults"
	MatchIsKeyboard	"on"
	Option		"XkbLayout" "fr"
EndSection

Example 5.8. Setting Multiple Keyboard Layouts
Set United States, Spanish, and Ukrainian
		 keyboard layouts. Cycle through these layouts by
		 pressing
		 Alt+Shift. x11/xxkb or
		 x11/sbxkb can be used for
		 improved layout switching control and
		 current layout indicators.
/usr/local/etc/X11/xorg.conf.d/kbd-layout-multi.conf
Section	"InputClass"
	Identifier	"All Keyboards"
	MatchIsKeyboard	"yes"
	Option		"XkbLayout" "us, es, ua"
EndSection

	Closing Xorg From the
	 Keyboard
	X can be closed with a combination of keys.
		By default, that key combination is not set because it
		conflicts with keyboard commands for some
		applications. Enabling this option requires changes
		to the keyboard InputDevice
		section:
Example 5.9. Enabling Keyboard Exit from X
/usr/local/etc/X11/xorg.conf.d/keyboard-zap.conf
Section	"InputClass"
	Identifier	"KeyboardDefaults"
	MatchIsKeyboard	"on"
	Option		"XkbOptions" "terminate:ctrl_alt_bksp"
EndSection

5.4.7.2. Mice and Pointing Devices
Important:
If using xorg-server 1.20.8 or
	 later under FreeBSD 12.1 and not
	 using moused(8), add
	 kern.evdev.rcpt_mask=12 to
	 /etc/sysctl.conf.

Many mouse parameters can be adjusted with configuration
	 options. See mousedrv(4) for a full list.
	Mouse Buttons
	The number of buttons on a mouse can be set in the
		mouse InputDevice section of
		xorg.conf. To set the number of
		buttons to 7:
Example 5.10. Setting the Number of Mouse Buttons
/usr/local/etc/X11/xorg.conf.d/mouse0-buttons.conf
Section "InputDevice"
	Identifier "Mouse0"
	Option "Buttons" "7"
EndSection

5.4.8. Manual Configuration
In some cases, Xorg
	autoconfiguration does not work with particular hardware, or a
	different configuration is desired. For these cases, a custom
	configuration file can be created.
Warning:
Do not create manual configuration files unless
	 required. Unnecessary manual configuration can prevent
	 proper operation.

A configuration file can be generated by
	Xorg based on the detected
	hardware. This file is often a useful starting point for
	custom configurations.
Generating an xorg.conf:
Xorg -configure
The configuration file is saved to
	/root/xorg.conf.new. Make any changes
	desired, then test that file (using -retro
	so there is a visible background) with:
Xorg -retro -config /root/xorg.conf.new
After the new configuration has been adjusted and tested,
	it can be split into smaller files in the normal location,
	/usr/local/etc/X11/xorg.conf.d/.
Chapter 13. Security
Rewritten by Tom Rhodes. 13.1. Synopsis
Security, whether physical or virtual, is a topic so broad
 that an entire industry has evolved around it. Hundreds of
 standard practices have been authored about how to secure
 systems and networks, and as a user of FreeBSD, understanding how
 to protect against attacks and intruders is a must.
In this chapter, several fundamentals and techniques will be
 discussed. The FreeBSD system comes with multiple layers of
 security, and many more third party utilities may be added to
 enhance security.
After reading this chapter, you will know:
	Basic FreeBSD system security concepts.

	The various crypt mechanisms available in FreeBSD.

	How to set up one-time password authentication.

	How to configure TCP Wrapper
	 for use with inetd(8).

	How to set up Kerberos on
	 FreeBSD.

	How to configure IPsec and create a
	 VPN.

	How to configure and use
	 OpenSSH on FreeBSD.

	How to use file system ACLs.

	How to use pkg to audit
	 third party software packages installed from the Ports
	 Collection.

	How to utilize FreeBSD security advisories.

	What Process Accounting is and how to enable it on
	 FreeBSD.

	How to control user resources using login classes or the
	 resource limits database.

Before reading this chapter, you should:
	Understand basic FreeBSD and Internet concepts.

Additional security topics are covered elsewhere in this
 Handbook. For example, Mandatory Access Control is discussed in
 Chapter 15, Mandatory Access Control and Internet firewalls are discussed in
 Chapter 30, Firewalls.
19.2. Quick Start Guide
There is a startup mechanism that allows FreeBSD to mount
 ZFS pools during system initialization. To
 enable it, add this line to
 /etc/rc.conf:
zfs_enable="YES"
Then start the service:
service zfs start
The examples in this section assume three
 SCSI disks with the device names
 da0,
 da1, and
 da2. Users
 of SATA hardware should instead use
 ada device
 names.
19.2.1. Single Disk Pool
To create a simple, non-redundant pool using a single
	disk device:
zpool create example /dev/da0
To view the new pool, review the output of
	df:
df
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/ad0s1a 2026030 235230 1628718 13% /
devfs 1 1 0 100% /dev
/dev/ad0s1d 54098308 1032846 48737598 2% /usr
example 17547136 0 17547136 0% /example
This output shows that the example pool
	has been created and mounted. It is now accessible as a file
	system. Files can be created on it and users can browse
	it:
cd /example
ls
touch testfile
ls -al
total 4
drwxr-xr-x 2 root wheel 3 Aug 29 23:15 .
drwxr-xr-x 21 root wheel 512 Aug 29 23:12 ..
-rw-r--r-- 1 root wheel 0 Aug 29 23:15 testfile
However, this pool is not taking advantage of any
	ZFS features. To create a dataset on this
	pool with compression enabled:
zfs create example/compressed
zfs set compression=gzip example/compressed
The example/compressed dataset is now a
	ZFS compressed file system. Try copying
	some large files to
	/example/compressed.
Compression can be disabled with:
zfs set compression=off example/compressed
To unmount a file system, use
	zfs umount and then verify with
	df:
zfs umount example/compressed
df
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/ad0s1a 2026030 235232 1628716 13% /
devfs 1 1 0 100% /dev
/dev/ad0s1d 54098308 1032864 48737580 2% /usr
example 17547008 0 17547008 0% /example
To re-mount the file system to make it accessible again,
	use zfs mount and verify with
	df:
zfs mount example/compressed
df
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/ad0s1a 2026030 235234 1628714 13% /
devfs 1 1 0 100% /dev
/dev/ad0s1d 54098308 1032864 48737580 2% /usr
example 17547008 0 17547008 0% /example
example/compressed 17547008 0 17547008 0% /example/compressed
The pool and file system may also be observed by viewing
	the output from mount:
mount
/dev/ad0s1a on / (ufs, local)
devfs on /dev (devfs, local)
/dev/ad0s1d on /usr (ufs, local, soft-updates)
example on /example (zfs, local)
example/compressed on /example/compressed (zfs, local)
After creation, ZFS datasets can be
	used like any file systems. However, many other features are
	available which can be set on a per-dataset basis. In the
	example below, a new file system called
	data is created. Important files will be
	stored here, so it is configured to keep two copies of each
	data block:
zfs create example/data
zfs set copies=2 example/data
It is now possible to see the data and space utilization
	by issuing df:
df
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/ad0s1a 2026030 235234 1628714 13% /
devfs 1 1 0 100% /dev
/dev/ad0s1d 54098308 1032864 48737580 2% /usr
example 17547008 0 17547008 0% /example
example/compressed 17547008 0 17547008 0% /example/compressed
example/data 17547008 0 17547008 0% /example/data
Notice that each file system on the pool has the same
	amount of available space. This is the reason for using
	df in these examples, to show that the file
	systems use only the amount of space they need and all draw
	from the same pool. ZFS eliminates
	concepts such as volumes and partitions, and allows multiple
	file systems to occupy the same pool.
To destroy the file systems and then destroy the pool as
	it is no longer needed:
zfs destroy example/compressed
zfs destroy example/data
zpool destroy example
19.2.2. RAID-Z
Disks fail. One method of avoiding data loss from disk
	failure is to implement RAID.
	ZFS supports this feature in its pool
	design. RAID-Z pools require three or more
	disks but provide more usable space than mirrored
	pools.
This example creates a RAID-Z pool,
	specifying the disks to add to the pool:
zpool create storage raidz da0 da1 da2
Note:
Sun™ recommends that the number of devices used in a
	 RAID-Z configuration be between three and
	 nine. For environments requiring a single pool consisting
	 of 10 disks or more, consider breaking it up into smaller
	 RAID-Z groups. If only two disks are
	 available and redundancy is a requirement, consider using a
	 ZFS mirror. Refer to zpool(8) for
	 more details.

The previous example created the
	storage zpool. This example makes a new
	file system called home in that
	pool:
zfs create storage/home
Compression and keeping extra copies of directories
	and files can be enabled:
zfs set copies=2 storage/home
zfs set compression=gzip storage/home
To make this the new home directory for users, copy the
	user data to this directory and create the appropriate
	symbolic links:
cp -rp /home/* /storage/home
rm -rf /home /usr/home
ln -s /storage/home /home
ln -s /storage/home /usr/home
Users data is now stored on the freshly-created
	/storage/home. Test by adding a new user
	and logging in as that user.
Try creating a file system snapshot which can be rolled
	back later:
zfs snapshot storage/home@08-30-08
Snapshots can only be made of a full file system, not a
	single directory or file.
The @ character is a delimiter between
	the file system name or the volume name. If an important
	directory has been accidentally deleted, the file system can
	be backed up, then rolled back to an earlier snapshot when the
	directory still existed:
zfs rollback storage/home@08-30-08
To list all available snapshots, run
	ls in the file system's
	.zfs/snapshot directory. For example, to
	see the previously taken snapshot:
ls /storage/home/.zfs/snapshot
It is possible to write a script to perform regular
	snapshots on user data. However, over time, snapshots can
	consume a great deal of disk space. The previous snapshot can
	be removed using the command:
zfs destroy storage/home@08-30-08
After testing, /storage/home can be
	made the real /home using this
	command:
zfs set mountpoint=/home storage/home
Run df and mount to
	confirm that the system now treats the file system as the real
	/home:
mount
/dev/ad0s1a on / (ufs, local)
devfs on /dev (devfs, local)
/dev/ad0s1d on /usr (ufs, local, soft-updates)
storage on /storage (zfs, local)
storage/home on /home (zfs, local)
df
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/ad0s1a 2026030 235240 1628708 13% /
devfs 1 1 0 100% /dev
/dev/ad0s1d 54098308 1032826 48737618 2% /usr
storage 26320512 0 26320512 0% /storage
storage/home 26320512 0 26320512 0% /home
This completes the RAID-Z
	configuration. Daily status updates about the file systems
	created can be generated as part of the nightly
	periodic(8) runs. Add this line to
	/etc/periodic.conf:
daily_status_zfs_enable="YES"
19.2.3. Recovering RAID-Z
Every software RAID has a method of
	monitoring its state. The status of
	RAID-Z devices may be viewed with this
	command:
zpool status -x
If all pools are
	Online and everything
	is normal, the message shows:
all pools are healthy
If there is an issue, perhaps a disk is in the
	Offline state, the
	pool state will look similar to:
 pool: storage
 state: DEGRADED
status: One or more devices has been taken offline by the administrator.
	Sufficient replicas exist for the pool to continue functioning in a
	degraded state.
action: Online the device using 'zpool online' or replace the device with
	'zpool replace'.
 scrub: none requested
config:

	NAME STATE READ WRITE CKSUM
	storage DEGRADED 0 0 0
	 raidz1 DEGRADED 0 0 0
	 da0 ONLINE 0 0 0
	 da1 OFFLINE 0 0 0
	 da2 ONLINE 0 0 0

errors: No known data errors
This indicates that the device was previously taken
	offline by the administrator with this command:
zpool offline storage da1
Now the system can be powered down to replace
	da1. When the system is back online,
	the failed disk can replaced in the pool:
zpool replace storage da1
From here, the status may be checked again, this time
	without -x so that all pools are
	shown:
zpool status storage
 pool: storage
 state: ONLINE
 scrub: resilver completed with 0 errors on Sat Aug 30 19:44:11 2008
config:

	NAME STATE READ WRITE CKSUM
	storage ONLINE 0 0 0
	 raidz1 ONLINE 0 0 0
	 da0 ONLINE 0 0 0
	 da1 ONLINE 0 0 0
	 da2 ONLINE 0 0 0

errors: No known data errors
In this example, everything is normal.
19.2.4. Data Verification
ZFS uses checksums to verify the
	integrity of stored data. These are enabled automatically
	upon creation of file systems.
Warning:
Checksums can be disabled, but it is
	 not recommended! Checksums take very
	 little storage space and provide data integrity. Many
	 ZFS features will not work properly with
	 checksums disabled. There is no noticeable performance gain
	 from disabling these checksums.

Checksum verification is known as
	scrubbing. Verify the data integrity of
	the storage pool with this command:
zpool scrub storage
The duration of a scrub depends on the amount of data
	stored. Larger amounts of data will take proportionally
	longer to verify. Scrubs are very I/O
	intensive, and only one scrub is allowed to run at a time.
	After the scrub completes, the status can be viewed with
	status:
zpool status storage
 pool: storage
 state: ONLINE
 scrub: scrub completed with 0 errors on Sat Jan 26 19:57:37 2013
config:

	NAME STATE READ WRITE CKSUM
	storage ONLINE 0 0 0
	 raidz1 ONLINE 0 0 0
	 da0 ONLINE 0 0 0
	 da1 ONLINE 0 0 0
	 da2 ONLINE 0 0 0

errors: No known data errors
The completion date of the last scrub operation is
	displayed to help track when another scrub is required.
	Routine scrubs help protect data from silent corruption and
	ensure the integrity of the pool.
Refer to zfs(8) and zpool(8) for other
	ZFS options.
Chapter 27. PPP
27.1. Synopsis
FreeBSD supports the Point-to-Point (PPP)
 protocol which can be used to establish a network or Internet
 connection using a dial-up modem. This chapter describes how to
 configure modem-based communication services in FreeBSD.
After reading this chapter, you will know:
	How to configure, use, and troubleshoot a
	 PPP connection.

	How to set up PPP over Ethernet
	 (PPPoE).

	How to set up PPP over
	 ATM
	 (PPPoA).

Before reading this chapter, you should:
	Be familiar with basic network terminology.

	Understand the basics and purpose of a dial-up
	 connection and PPP.

17.11. Disk Quotas
Disk quotas can be used to limit the amount of disk space or
 the number of files a user or members of a group may allocate on
 a per-file system basis. This prevents one user or group of
 users from consuming all of the available disk space.
This section describes how to configure disk quotas for the
 UFS file system. To configure quotas on the
 ZFS file system, refer to Section 19.4.8, “Dataset, User, and Group Quotas”
17.11.1. Enabling Disk Quotas
To determine if the FreeBSD kernel provides support for disk
	quotas:
% sysctl kern.features.ufs_quota
kern.features.ufs_quota: 1
In this example, the 1 indicates quota
	support. If the value is instead 0, add
	the following line to a custom kernel configuration file and
	rebuild the kernel using the instructions in Chapter 8, Configuring the FreeBSD Kernel:
options QUOTA
Next, enable disk quotas in
	/etc/rc.conf:
quota_enable="YES"
Normally on bootup, the quota integrity of each file
	system is checked by quotacheck(8). This program insures
	that the data in the quota database properly reflects the data
	on the file system. This is a time consuming process that
	will significantly affect the time the system takes to boot.
	To skip this step, add this variable to
	/etc/rc.conf:
check_quotas="NO"
Finally, edit /etc/fstab to enable
	disk quotas on a per-file system basis. To enable per-user
	quotas on a file system, add userquota to the
	options field in the /etc/fstab entry for
	the file system to enable quotas on. For example:
/dev/da1s2g /home ufs rw,userquota 1 2
To enable group quotas, use groupquota
	instead. To enable both user and group quotas, separate the
	options with a comma:
/dev/da1s2g /home ufs rw,userquota,groupquota 1 2
By default, quota files are stored in the root directory
	of the file system as quota.user and
	quota.group. Refer to fstab(5) for
	more information. Specifying an alternate location for the
	quota files is not recommended.
Once the configuration is complete, reboot the system and
	/etc/rc will automatically run the
	appropriate commands to create the initial quota files for all
	of the quotas enabled in
	/etc/fstab.
In the normal course of operations, there should be no
	need to manually run quotacheck(8), quotaon(8), or
	quotaoff(8). However, one should read these manual pages
	to be familiar with their operation.
17.11.2. Setting Quota Limits
To
	verify that quotas are enabled, run:
quota -v
There should be a one line summary of disk usage and
	current quota limits for each file system that quotas are
	enabled on.
The system is now ready to be assigned quota limits with
	edquota.
Several options are available to enforce limits on the
	amount of disk space a user or group may allocate, and how
	many files they may create. Allocations can be limited based
	on disk space (block quotas), number of files (inode quotas),
	or a combination of both. Each limit is further broken down
	into two categories: hard and soft limits.
A hard limit may not be exceeded. Once a user reaches a
	hard limit, no further allocations can be made on that file
	system by that user. For example, if the user has a hard
	limit of 500 kbytes on a file system and is currently using
	490 kbytes, the user can only allocate an additional 10
	kbytes. Attempting to allocate an additional 11 kbytes will
	fail.
Soft limits can be exceeded for a limited amount of time,
	known as the grace period, which is one week by default. If a
	user stays over their limit longer than the grace period, the
	soft limit turns into a hard limit and no further allocations
	are allowed. When the user drops back below the soft limit,
	the grace period is reset.
In the following example, the quota for the test account is being edited.
	When edquota is invoked, the editor
	specified by EDITOR is opened in order to edit
	the quota limits. The default editor is set to
	vi.
edquota -u test
Quotas for user test:
/usr: kbytes in use: 65, limits (soft = 50, hard = 75)
 inodes in use: 7, limits (soft = 50, hard = 60)
/usr/var: kbytes in use: 0, limits (soft = 50, hard = 75)
 inodes in use: 0, limits (soft = 50, hard = 60)
There are normally two lines for each file system that has
	quotas enabled. One line represents the block limits and the
	other represents the inode limits. Change the value to modify
	the quota limit. For example, to raise the block limit on
	/usr to a soft limit of
	500 and a hard limit of
	600, change the values in that line as
	follows:
/usr: kbytes in use: 65, limits (soft = 500, hard = 600)
The new quota limits take effect upon exiting the
	editor.
Sometimes it is desirable to set quota limits on a range
	of users. This can be done by first assigning the desired
	quota limit to a user. Then, use -p to
	duplicate that quota to a specified range of user IDs
	(UIDs). The following command will
	duplicate those quota limits for UIDs
	10,000 through
	19,999:
edquota -p test 10000-19999
For more information, refer to edquota(8).
17.11.3. Checking Quota Limits and Disk Usage
To check individual user or group quotas and disk usage,
	use quota(1). A user may only examine their own quota
	and the quota of a group they are a member of. Only the
	superuser may view all user and group quotas. To get a
	summary of all quotas and disk usage for file systems with
	quotas enabled, use repquota(8).
Normally, file systems that the user is not using any disk
	space on will not show in the output of
	quota, even if the user has a quota limit
	assigned for that file system. Use -v to
	display those file systems. The following is sample output
	from quota -v for a user that has quota
	limits on two file systems.
Disk quotas for user test (uid 1002):
 Filesystem usage quota limit grace files quota limit grace
 /usr 65* 50 75 5days 7 50 60
 /usr/var 0 50 75 0 50 60
In this example, the user is currently 15 kbytes over the
	soft limit of 50 kbytes on /usr and has 5
	days of grace period left. The asterisk *
	indicates that the user is currently over the quota
	limit.
17.11.4. Quotas over NFS
Quotas are enforced by the quota subsystem on the
	NFS server. The rpc.rquotad(8) daemon
	makes quota information available to quota
	on NFS clients, allowing users on those
	machines to see their quota statistics.
On the NFS server, enable
	rpc.rquotad by removing the
	# from this line in
	/etc/inetd.conf:
rquotad/1 dgram rpc/udp wait root /usr/libexec/rpc.rquotad rpc.rquotad
Then, restart inetd:
service inetd restart
11.9. Tuning with sysctl(8)
sysctl(8) is used to make changes to a running FreeBSD
 system. This includes many advanced options of the
 TCP/IP stack and virtual memory system
 that can dramatically improve performance for an experienced
 system administrator. Over five hundred system variables can
 be read and set using sysctl(8).
At its core, sysctl(8) serves two functions: to read
 and to modify system settings.
To view all readable variables:
% sysctl -a
To read a particular variable, specify its name:
% sysctl kern.maxproc
kern.maxproc: 1044
To set a particular variable, use the
 variable=value
 syntax:
sysctl kern.maxfiles=5000
kern.maxfiles: 2088 -> 5000
Settings of sysctl variables are usually either strings,
 numbers, or booleans, where a boolean is 1
 for yes or 0 for no.
To automatically set some variables each time the machine
 boots, add them to /etc/sysctl.conf. For
 more information, refer to sysctl.conf(5) and
 Section 11.9.1, “sysctl.conf”.
11.9.1. sysctl.conf
The configuration file for sysctl(8),
	/etc/sysctl.conf, looks much like
	/etc/rc.conf. Values are set in a
	variable=value form. The specified values
	are set after the system goes into multi-user mode. Not all
	variables are settable in this mode.
For example, to turn off logging of fatal signal exits
	and prevent users from seeing processes started by other
	users, the following tunables can be set in
	/etc/sysctl.conf:
Do not log fatal signal exits (e.g., sig 11)
kern.logsigexit=0

Prevent users from seeing information about processes that
are being run under another UID.
security.bsd.see_other_uids=0
11.9.2. sysctl(8) Read-only
Contributed by Tom Rhodes. In some cases it may be desirable to modify read-only
	sysctl(8) values, which will require a reboot of the
	system.
For instance, on some laptop models the cardbus(4)
	device will not probe memory ranges and will fail with errors
	similar to:
cbb0: Could not map register memory
device_probe_and_attach: cbb0 attach returned 12
The fix requires the modification of a read-only
	sysctl(8) setting. Add
	hw.pci.allow_unsupported_io_range=1 to
	/boot/loader.conf and reboot. Now
	cardbus(4) should work properly.
22.4. Locale Configuration for Specific Languages
This section provides configuration examples for localizing
 a FreeBSD system for the Russian language. It then provides some
 additional resources for localizing other languages.
22.4.1. Russian Language (KOI8-R Encoding)
Originally
	 contributed by Andrey Chernov. This section shows the specific settings needed to
	localize a FreeBSD system for the Russian language. Refer to
	Using Localization
	for a more complete description of each type of
	setting.
To set this locale for the login shell, add the following
	lines to each user's
	~/.login_conf:
me:My Account:\
	:charset=KOI8-R:\
	:lang=ru_RU.KOI8-R:
To configure the console, add the following lines to
	/etc/rc.conf:
keymap="ru.koi8-r"
scrnmap="koi8-r2cp866"
font8x16="cp866b-8x16"
font8x14="cp866-8x14"
font8x8="cp866-8x8"
mousechar_start=3
For each ttyv entry in
	/etc/ttys, use
	cons25r as the terminal type.
To configure printing, a special output filter is needed
	to convert from KOI8-R to CP866 since most printers with
	Russian characters come with hardware code page CP866. FreeBSD
	includes a default filter for this purpose,
	/usr/libexec/lpr/ru/koi2alt. To use this
	filter, add this entry to
	/etc/printcap:
lp|Russian local line printer:\
	:sh:of=/usr/libexec/lpr/ru/koi2alt:\
	:lp=/dev/lpt0:sd=/var/spool/output/lpd:lf=/var/log/lpd-errs:
Refer to printcap(5) for a more detailed
	explanation.
To configure support for Russian filenames in mounted
	MS-DOS® file systems, include -L and the
	locale name when adding an entry to
	/etc/fstab:
/dev/ad0s2 /dos/c msdos rw,-Lru_RU.KOI8-R 0 0
Refer to mount_msdosfs(8) for more details.
To configure Russian fonts for
	Xorg, install the
	x11-fonts/xorg-fonts-cyrillic package.
	Then, check the "Files" section in
	/etc/X11/xorg.conf. The following line
	must be added before any other
	FontPath entries:
FontPath "/usr/local/lib/X11/fonts/cyrillic"
Additional Cyrillic fonts are available in the Ports
	Collection.
To activate a Russian keyboard, add the following to the
	"Keyboard" section of
	/etc/xorg.conf:
Option "XkbLayout" "us,ru"
Option "XkbOptions" "grp:toggle"
Make sure that XkbDisable is
	commented out in that file.
For grp:toggle use
	Right Alt, for
	grp:ctrl_shift_toggle use Ctrl+Shift.
	For grp:caps_toggle use
	CapsLock. The old
	CapsLock function is still available in LAT
	mode only using Shift+CapsLock.
	grp:caps_toggle does not work in
	Xorg for some unknown
	reason.
If the keyboard has “Windows®” keys, and
	some non-alphabetical keys are mapped incorrectly, add the
	following line to /etc/xorg.conf:
Option "XkbVariant" ",winkeys"
Note:
The Russian XKB keyboard may not work with
	 non-localized applications. Minimally localized
	 applications should call a XtSetLanguageProc
	 (NULL, NULL, NULL); function early in the
	 program.

See http://koi8.pp.ru/xwin.html
	for more instructions on localizing
	Xorg applications. For more
	general information about KOI8-R encoding, refer to http://koi8.pp.ru/.
22.4.2. Additional Language-Specific Resources
This section lists some additional resources for
	configuring other locales.
	Traditional Chinese for Taiwan
	The FreeBSD-Taiwan Project has a Chinese HOWTO for FreeBSD
	 at http://netlab.cse.yzu.edu.tw/~statue/freebsd/zh-tut/.

	Greek Language Localization
	A complete article on Greek support in FreeBSD
	 is available here,
	 in Greek only, as part of the official FreeBSD Greek
	 documentation.

	Japanese and Korean Language Localization
	For Japanese, refer to http://www.jp.FreeBSD.org/,
	 and for Korean, refer to http://www.kr.FreeBSD.org/.

	Non-English FreeBSD Documentation
	Some FreeBSD contributors have translated parts of the
	 FreeBSD documentation to other languages. They are
	 available through links on the FreeBSD web
		site or in
	 /usr/share/doc.

7.3. MP3 Audio
Contributed by Chern Lee. This section describes some MP3
 players available for FreeBSD, how to rip audio
 CD tracks, and how to encode and decode
 MP3s.
7.3.1. MP3 Players
A popular graphical MP3 player is
	Audacious. It supports
	Winamp skins and additional
	plugins. The interface is intuitive, with a playlist, graphic
	equalizer, and more. Those familiar with
	Winamp will find
	Audacious simple to use. On FreeBSD,
	Audacious can be installed from the
	multimedia/audacious port or package.
	Audacious is a descendant of XMMS.
The audio/mpg123 package or port
	provides an alternative, command-line MP3
	player. Once installed, specify the MP3
	file to play on the command line. If the system has multiple
	audio devices, the sound device can also be specified:
mpg123 -a /dev/dsp1.0 Foobar-GreatestHits.mp3
High Performance MPEG 1.0/2.0/2.5 Audio Player for Layers 1, 2 and 3
 version 1.18.1; written and copyright by Michael Hipp and others
 free software (LGPL) without any warranty but with best wishes

Playing MPEG stream from Foobar-GreatestHits.mp3 ...
MPEG 1.0 layer III, 128 kbit/s, 44100 Hz joint-stereo
Additional MP3 players are available in
	the FreeBSD Ports Collection.
7.3.2. Ripping CD Audio Tracks
Before encoding a CD or
	CD track to MP3, the
	audio data on the CD must be ripped to the
	hard drive. This is done by copying the raw
	CD Digital Audio (CDDA)
	data to WAV files.
The cdda2wav tool, which is installed
	with the sysutils/cdrtools suite, can be
	used to rip audio information from
	CDs.
With the audio CD in the drive, the
	following command can be issued as
	root to rip an
	entire CD into individual, per track,
	WAV files:
cdda2wav -D 0,1,0 -B
In this example, the
	-D 0,1,0 indicates
	the SCSI device 0,1,0
	containing the CD to rip. Use
	cdrecord -scanbus to determine the correct
	device parameters for the system.
To rip individual tracks, use -t to
	specify the track:
cdda2wav -D 0,1,0 -t 7
To rip a range of tracks, such as track one to seven,
	specify a range:
cdda2wav -D 0,1,0 -t 1+7
To rip from an ATAPI
	(IDE) CDROM drive,
	specify the device name in place of the
	SCSI unit numbers. For example, to rip
	track 7 from an IDE drive:
cdda2wav -D /dev/acd0 -t 7
Alternately, dd can be used to extract
	audio tracks on ATAPI drives, as described
	in Section 17.5.5, “Duplicating Audio CDs”.
7.3.3. Encoding and Decoding MP3s
Lame is a popular
	MP3 encoder which can be installed from the
	audio/lame port. Due to patent issues, a
	package is not available.
The following command will convert the ripped
	WAV file
	audio01.wav to
	audio01.mp3:
lame -h -b 128 --tt "Foo Song Title" --ta "FooBar Artist" --tl "FooBar Album" \
--ty "2014" --tc "Ripped and encoded by Foo" --tg "Genre" audio01.wav audio01.mp3
The specified 128 kbits is a standard
	MP3 bitrate while the 160 and 192 bitrates
	provide higher quality. The higher the bitrate, the larger
	the size of the resulting MP3. The
	-h turns on the
	“higher quality but a little slower”
	mode. The options beginning with --t
	indicate ID3 tags, which usually contain
	song information, to be embedded within the
	MP3 file. Additional encoding options can
	be found in the lame manual
	page.
In order to burn an audio CD from
	MP3s, they must first be converted to a
	non-compressed file format. XMMS
	can be used to convert to the WAV format,
	while mpg123 can be used to convert
	to the raw Pulse-Code Modulation (PCM)
	audio data format.
To convert audio01.mp3 using
	mpg123, specify the name of the
	PCM file:
mpg123 -s audio01.mp3 > audio01.pcm
To use XMMS to convert a
	MP3 to WAV format, use
	these steps:
Procedure 7.1. Converting to WAV Format in
	 XMMS
	Launch XMMS.

	Right-click the window to bring up the
	 XMMS menu.

	Select Preferences under
	 Options.

	Change the Output Plugin to “Disk Writer
	 Plugin”.

	Press Configure.

	Enter or browse to a directory to write the
	 uncompressed files to.

	Load the MP3 file into
	 XMMS as usual, with volume at
	 100% and EQ settings turned off.

	Press Play. The
	 XMMS will appear as if it is
	 playing the MP3, but no music will be
	 heard. It is actually playing the MP3
	 to a file.

	When finished, be sure to set the default Output
	 Plugin back to what it was before in order to listen to
	 MP3s again.

Both the WAV and PCM
	formats can be used with cdrecord.
	When using WAV files, there will be a small
	tick sound at the beginning of each track. This sound is the
	header of the WAV file. The
	audio/sox port or package can be used to
	remove the header:
% sox -t wav -r 44100 -s -w -c 2 track.wav track.raw
Refer to Section 17.5, “Creating and Using CD Media” for more
	information on using a CD burner in
	FreeBSD.
17.6. Creating and Using DVD Media
Contributed by Marc Fonvieille. With inputs from Andy Polyakov. Compared to the CD, the
 DVD is the next generation of optical media
 storage technology. The DVD can hold more
 data than any CD and is the standard for
 video publishing.
Five physical recordable formats can be defined for a
 recordable DVD:
	DVD-R: This was the first DVD
	 recordable format available. The DVD-R standard is defined
	 by the DVD
	 Forum. This format is write once.

	DVD-RW: This is the rewritable
	 version of the DVD-R standard. A
	 DVD-RW can be rewritten about 1000
	 times.

	DVD-RAM: This is a rewritable format
	 which can be seen as a removable hard drive. However, this
	 media is not compatible with most
	 DVD-ROM drives and DVD-Video players as
	 only a few DVD writers support the
	 DVD-RAM format. Refer to Section 17.6.8, “Using a DVD-RAM” for more information on
	 DVD-RAM use.

	DVD+RW: This is a rewritable format
	 defined by the
	 DVD+RW Alliance. A
	 DVD+RW can be rewritten about 1000
	 times.

	DVD+R: This format is the write once variation of the
	 DVD+RW format.

A single layer recordable DVD can hold up
 to 4,700,000,000 bytes which is actually 4.38 GB or
 4485 MB as 1 kilobyte is 1024 bytes.
Note:
A distinction must be made between the physical media and
	the application. For example, a DVD-Video is a specific file
	layout that can be written on any recordable
	DVD physical media such as DVD-R, DVD+R, or
	DVD-RW. Before choosing the type of media,
	ensure that both the burner and the DVD-Video player are
	compatible with the media under consideration.

17.6.1. Configuration
To perform DVD recording, use
	growisofs(1). This command is part of the
	sysutils/dvd+rw-tools utilities which
	support all DVD media types.
These tools use the SCSI subsystem to
	access the devices, therefore ATAPI/CAM support must be loaded
	or statically compiled into the kernel. This support is not
	needed if the burner uses the USB
	interface. Refer to Section 17.4, “USB Storage Devices” for more
	details on USB device configuration.
DMA access must also be enabled for
	ATAPI devices, by adding the following line
	to /boot/loader.conf:
hw.ata.atapi_dma="1"
Before attempting to use
	dvd+rw-tools, consult the Hardware
	 Compatibility Notes.
Note:
For a graphical user interface, consider using
	 sysutils/k3b which provides a user
	 friendly interface to growisofs(1) and many other
	 burning tools.

17.6.2. Burning Data DVDs
Since growisofs(1) is a front-end to mkisofs, it will invoke
	mkisofs(8) to create the file system layout and perform
	the write on the DVD. This means that an
	image of the data does not need to be created before the
	burning process.
To burn to a DVD+R or a DVD-R the data in
	/path/to/data, use the following
	command:
growisofs -dvd-compat -Z /dev/cd0 -J -R /path/to/data
In this example, -J -R is passed to
	mkisofs(8) to create an ISO 9660 file system with Joliet
	and Rock Ridge extensions. Refer to mkisofs(8) for more
	details.
For the initial session recording, -Z is
	used for both single and multiple sessions. Replace
	/dev/cd0, with the name of the
	DVD device. Using
	-dvd-compat indicates that the disk will be
	closed and that the recording will be unappendable. This
	should also provide better media compatibility with
	DVD-ROM drives.
To burn a pre-mastered image, such as
	imagefile.iso, use:
growisofs -dvd-compat -Z /dev/cd0=imagefile.iso
The write speed should be detected and automatically set
	according to the media and the drive being used. To force the
	write speed, use -speed=. Refer to
	growisofs(1) for example usage.
Note:
In order to support working files larger than 4.38GB, an
	 UDF/ISO-9660 hybrid file system must be created by passing
	 -udf -iso-level 3 to mkisofs(8) and
	 all related programs, such as growisofs(1). This is
	 required only when creating an ISO image file or when
	 writing files directly to a disk. Since a disk created this
	 way must be mounted as an UDF file system with
	 mount_udf(8), it will be usable only on an UDF aware
	 operating system. Otherwise it will look as if it contains
	 corrupted files.
To create this type of ISO file:
% mkisofs -R -J -udf -iso-level 3 -o imagefile.iso /path/to/data
To burn files directly to a disk:
growisofs -dvd-compat -udf -iso-level 3 -Z /dev/cd0 -J -R /path/to/data
When an ISO image already contains large files, no
	 additional options are required for growisofs(1) to
	 burn that image on a disk.
Be sure to use an up-to-date version of
	 sysutils/cdrtools, which contains
	 mkisofs(8), as an older version may not contain large
	 files support. If the latest version does not work, install
	 sysutils/cdrtools-devel and read its
	 mkisofs(8).

17.6.3. Burning a DVD-Video
A DVD-Video is a specific file layout based on the ISO
	9660 and micro-UDF (M-UDF) specifications. Since DVD-Video
	presents a specific data structure hierarchy, a particular
	program such as multimedia/dvdauthor is
	needed to author the DVD.
If an image of the DVD-Video file system already exists,
	it can be burned in the same way as any other image. If
	dvdauthor was used to make the
	DVD and the result is in
	/path/to/video, the following command
	should be used to burn the DVD-Video:
growisofs -Z /dev/cd0 -dvd-video /path/to/video
-dvd-video is passed to mkisofs(8)
	to instruct it to create a DVD-Video file system layout.
	This option implies the -dvd-compat
	growisofs(1) option.
17.6.4. Using a DVD+RW
Unlike CD-RW, a virgin DVD+RW needs to
	be formatted before first use. It is
	recommended to let growisofs(1) take
	care of this automatically whenever appropriate. However, it
	is possible to use dvd+rw-format to format
	the DVD+RW:
dvd+rw-format /dev/cd0
Only perform this operation once and keep in mind that
	only virgin DVD+RW medias need to be
	formatted. Once formatted, the DVD+RW can
	be burned as usual.
To burn a totally new file system and not just append some
	data onto a DVD+RW, the media does not need
	to be blanked first. Instead, write over the previous
	recording like this:
growisofs -Z /dev/cd0 -J -R /path/to/newdata
The DVD+RW format supports appending
	data to a previous recording. This operation consists of
	merging a new session to the existing one as it is not
	considered to be multi-session writing. growisofs(1)
	will grow the ISO 9660 file system
	present on the media.
For example, to append data to a
	DVD+RW, use the following:
growisofs -M /dev/cd0 -J -R /path/to/nextdata
The same mkisofs(8) options used to burn the
	initial session should be used during next writes.
Note:
Use -dvd-compat for better media
	 compatibility with DVD-ROM drives. When
	 using DVD+RW, this option will not
	 prevent the addition of data.

To blank the media, use:
growisofs -Z /dev/cd0=/dev/zero
17.6.5. Using a DVD-RW
A DVD-RW accepts two disc formats:
	incremental sequential and restricted overwrite. By default,
	DVD-RW discs are in sequential
	format.
A virgin DVD-RW can be directly written
	without being formatted. However, a non-virgin
	DVD-RW in sequential format needs to be
	blanked before writing a new initial session.
To blank a DVD-RW in sequential
	mode:
dvd+rw-format -blank=full /dev/cd0
Note:
A full blanking using -blank=full will
	 take about one hour on a 1x media. A fast blanking can be
	 performed using -blank, if the
	 DVD-RW will be recorded in Disk-At-Once
	 (DAO) mode. To burn the DVD-RW in DAO
	 mode, use the command:
growisofs -use-the-force-luke=dao -Z /dev/cd0=imagefile.iso
Since growisofs(1) automatically attempts to detect
	 fast blanked media and engage DAO write,
	 -use-the-force-luke=dao should not be
	 required.
One should instead use restricted overwrite mode with
	 any DVD-RW as this format is more
	 flexible than the default of incremental sequential.

To write data on a sequential DVD-RW,
	use the same instructions as for the other
	DVD formats:
growisofs -Z /dev/cd0 -J -R /path/to/data
To append some data to a previous recording, use
	-M with growisofs(1). However, if data
	is appended on a DVD-RW in incremental
	sequential mode, a new session will be created on the disc and
	the result will be a multi-session disc.
A DVD-RW in restricted overwrite format
	does not need to be blanked before a new initial session.
	Instead, overwrite the disc with -Z. It is
	also possible to grow an existing ISO 9660 file system written
	on the disc with -M. The result will be a
	one-session DVD.
To put a DVD-RW in restricted overwrite
	format, the following command must be used:
dvd+rw-format /dev/cd0
To change back to sequential format, use:
dvd+rw-format -blank=full /dev/cd0
17.6.6. Multi-Session
Few DVD-ROM drives support
	multi-session DVDs and most of the time only read the first
	session. DVD+R, DVD-R and DVD-RW in
	sequential format can accept multiple sessions. The notion
	of multiple sessions does not exist for the
	DVD+RW and the DVD-RW
	restricted overwrite formats.
Using the following command after an initial non-closed
	session on a DVD+R, DVD-R, or DVD-RW in
	sequential format, will add a new session to the disc:
growisofs -M /dev/cd0 -J -R /path/to/nextdata
Using this command with a DVD+RW or a
	DVD-RW in restricted overwrite mode will
	append data while merging the new session to the existing one.
	The result will be a single-session disc. Use this method to
	add data after an initial write on these types of
	media.
Note:
Since some space on the media is used between each
	 session to mark the end and start of sessions, one should
	 add sessions with a large amount of data to optimize media
	 space. The number of sessions is limited to 154 for a
	 DVD+R, about 2000 for a DVD-R, and 127 for a DVD+R Double
	 Layer.

17.6.7. For More Information
To obtain more information about a DVD,
	use dvd+rw-mediainfo
	 /dev/cd0 while the
	disc in the specified drive.
More information about
	dvd+rw-tools can be found in
	growisofs(1), on the dvd+rw-tools
	 web site, and in the cdwrite
	 mailing list archives.
Note:
When creating a problem report related to the use of
	 dvd+rw-tools, always include the
	 output of dvd+rw-mediainfo.

17.6.8. Using a DVD-RAM
DVD-RAM writers can use either a
	SCSI or ATAPI interface.
	For ATAPI devices, DMA access has to be
	enabled by adding the following line to
	/boot/loader.conf:
hw.ata.atapi_dma="1"
A DVD-RAM can be seen as a removable
	hard drive. Like any other hard drive, the
	DVD-RAM must be formatted before it can be
	used. In this example, the whole disk space will be formatted
	with a standard UFS2 file system:
dd if=/dev/zero of=/dev/acd0 bs=2k count=1
bsdlabel -Bw acd0
newfs /dev/acd0
The DVD device,
	acd0, must be changed according to the
	configuration.
Once the DVD-RAM has been formatted, it
	can be mounted as a normal hard drive:
mount /dev/acd0 /mnt
Once mounted, the DVD-RAM will be both
	readable and writeable.
19.4. zfs Administration
The zfs utility is responsible for
 creating, destroying, and managing all ZFS
 datasets that exist within a pool. The pool is managed using
 zpool.
19.4.1. Creating and Destroying Datasets
Unlike traditional disks and volume managers, space in
	ZFS is not
	preallocated. With traditional file systems, after all of the
	space is partitioned and assigned, there is no way to add an
	additional file system without adding a new disk. With
	ZFS, new file systems can be created at any
	time. Each dataset
	has properties including features like compression,
	deduplication, caching, and quotas, as well as other useful
	properties like readonly, case sensitivity, network file
	sharing, and a mount point. Datasets can be nested inside
	each other, and child datasets will inherit properties from
	their parents. Each dataset can be administered,
	delegated,
	replicated,
	snapshotted,
	jailed, and destroyed as a
	unit. There are many advantages to creating a separate
	dataset for each different type or set of files. The only
	drawbacks to having an extremely large number of datasets is
	that some commands like zfs list will be
	slower, and the mounting of hundreds or even thousands of
	datasets can slow the FreeBSD boot process.
Create a new dataset and enable LZ4
	 compression on it:
zfs list
NAME USED AVAIL REFER MOUNTPOINT
mypool 781M 93.2G 144K none
mypool/ROOT 777M 93.2G 144K none
mypool/ROOT/default 777M 93.2G 777M /
mypool/tmp 176K 93.2G 176K /tmp
mypool/usr 616K 93.2G 144K /usr
mypool/usr/home 184K 93.2G 184K /usr/home
mypool/usr/ports 144K 93.2G 144K /usr/ports
mypool/usr/src 144K 93.2G 144K /usr/src
mypool/var 1.20M 93.2G 608K /var
mypool/var/crash 148K 93.2G 148K /var/crash
mypool/var/log 178K 93.2G 178K /var/log
mypool/var/mail 144K 93.2G 144K /var/mail
mypool/var/tmp 152K 93.2G 152K /var/tmp
zfs create -o compress=lz4 mypool/usr/mydataset
zfs list
NAME USED AVAIL REFER MOUNTPOINT
mypool 781M 93.2G 144K none
mypool/ROOT 777M 93.2G 144K none
mypool/ROOT/default 777M 93.2G 777M /
mypool/tmp 176K 93.2G 176K /tmp
mypool/usr 704K 93.2G 144K /usr
mypool/usr/home 184K 93.2G 184K /usr/home
mypool/usr/mydataset 87.5K 93.2G 87.5K /usr/mydataset
mypool/usr/ports 144K 93.2G 144K /usr/ports
mypool/usr/src 144K 93.2G 144K /usr/src
mypool/var 1.20M 93.2G 610K /var
mypool/var/crash 148K 93.2G 148K /var/crash
mypool/var/log 178K 93.2G 178K /var/log
mypool/var/mail 144K 93.2G 144K /var/mail
mypool/var/tmp 152K 93.2G 152K /var/tmp
Destroying a dataset is much quicker than deleting all
	of the files that reside on the dataset, as it does not
	involve scanning all of the files and updating all of the
	corresponding metadata.
Destroy the previously-created dataset:
zfs list
NAME USED AVAIL REFER MOUNTPOINT
mypool 880M 93.1G 144K none
mypool/ROOT 777M 93.1G 144K none
mypool/ROOT/default 777M 93.1G 777M /
mypool/tmp 176K 93.1G 176K /tmp
mypool/usr 101M 93.1G 144K /usr
mypool/usr/home 184K 93.1G 184K /usr/home
mypool/usr/mydataset 100M 93.1G 100M /usr/mydataset
mypool/usr/ports 144K 93.1G 144K /usr/ports
mypool/usr/src 144K 93.1G 144K /usr/src
mypool/var 1.20M 93.1G 610K /var
mypool/var/crash 148K 93.1G 148K /var/crash
mypool/var/log 178K 93.1G 178K /var/log
mypool/var/mail 144K 93.1G 144K /var/mail
mypool/var/tmp 152K 93.1G 152K /var/tmp
zfs destroy mypool/usr/mydataset
zfs list
NAME USED AVAIL REFER MOUNTPOINT
mypool 781M 93.2G 144K none
mypool/ROOT 777M 93.2G 144K none
mypool/ROOT/default 777M 93.2G 777M /
mypool/tmp 176K 93.2G 176K /tmp
mypool/usr 616K 93.2G 144K /usr
mypool/usr/home 184K 93.2G 184K /usr/home
mypool/usr/ports 144K 93.2G 144K /usr/ports
mypool/usr/src 144K 93.2G 144K /usr/src
mypool/var 1.21M 93.2G 612K /var
mypool/var/crash 148K 93.2G 148K /var/crash
mypool/var/log 178K 93.2G 178K /var/log
mypool/var/mail 144K 93.2G 144K /var/mail
mypool/var/tmp 152K 93.2G 152K /var/tmp
In modern versions of ZFS,
	zfs destroy is asynchronous, and the free
	space might take several minutes to appear in the pool. Use
	zpool get freeing
	 poolname to see the
	freeing property, indicating how many
	datasets are having their blocks freed in the background.
	If there are child datasets, like
	snapshots or other
	datasets, then the parent cannot be destroyed. To destroy a
	dataset and all of its children, use -r to
	recursively destroy the dataset and all of its children.
	Use -n -v to list datasets
	and snapshots that would be destroyed by this operation, but
	do not actually destroy anything. Space that would be
	reclaimed by destruction of snapshots is also shown.
19.4.2. Creating and Destroying Volumes
A volume is a special type of dataset. Rather than being
	mounted as a file system, it is exposed as a block device
	under
	/dev/zvol/poolname/dataset.
	This allows the volume to be used for other file systems, to
	back the disks of a virtual machine, or to be exported using
	protocols like iSCSI or
	HAST.
A volume can be formatted with any file system, or used
	without a file system to store raw data. To the user, a
	volume appears to be a regular disk. Putting ordinary file
	systems on these zvols provides features
	that ordinary disks or file systems do not normally have. For
	example, using the compression property on a 250 MB
	volume allows creation of a compressed FAT
	file system.
zfs create -V 250m -o compression=on tank/fat32
zfs list tank
NAME USED AVAIL REFER MOUNTPOINT
tank 258M 670M 31K /tank
newfs_msdos -F32 /dev/zvol/tank/fat32
mount -t msdosfs /dev/zvol/tank/fat32 /mnt
df -h /mnt | grep fat32
Filesystem Size Used Avail Capacity Mounted on
/dev/zvol/tank/fat32 249M 24k 249M 0% /mnt
mount | grep fat32
/dev/zvol/tank/fat32 on /mnt (msdosfs, local)
Destroying a volume is much the same as destroying a
	regular file system dataset. The operation is nearly
	instantaneous, but it may take several minutes for the free
	space to be reclaimed in the background.
19.4.3. Renaming a Dataset
The name of a dataset can be changed with
	zfs rename. The parent of a dataset can
	also be changed with this command. Renaming a dataset to be
	under a different parent dataset will change the value of
	those properties that are inherited from the parent dataset.
	When a dataset is renamed, it is unmounted and then remounted
	in the new location (which is inherited from the new parent
	dataset). This behavior can be prevented with
	-u.
Rename a dataset and move it to be under a different
	parent dataset:
zfs list
NAME USED AVAIL REFER MOUNTPOINT
mypool 780M 93.2G 144K none
mypool/ROOT 777M 93.2G 144K none
mypool/ROOT/default 777M 93.2G 777M /
mypool/tmp 176K 93.2G 176K /tmp
mypool/usr 704K 93.2G 144K /usr
mypool/usr/home 184K 93.2G 184K /usr/home
mypool/usr/mydataset 87.5K 93.2G 87.5K /usr/mydataset
mypool/usr/ports 144K 93.2G 144K /usr/ports
mypool/usr/src 144K 93.2G 144K /usr/src
mypool/var 1.21M 93.2G 614K /var
mypool/var/crash 148K 93.2G 148K /var/crash
mypool/var/log 178K 93.2G 178K /var/log
mypool/var/mail 144K 93.2G 144K /var/mail
mypool/var/tmp 152K 93.2G 152K /var/tmp
zfs rename mypool/usr/mydataset mypool/var/newname
zfs list
NAME USED AVAIL REFER MOUNTPOINT
mypool 780M 93.2G 144K none
mypool/ROOT 777M 93.2G 144K none
mypool/ROOT/default 777M 93.2G 777M /
mypool/tmp 176K 93.2G 176K /tmp
mypool/usr 616K 93.2G 144K /usr
mypool/usr/home 184K 93.2G 184K /usr/home
mypool/usr/ports 144K 93.2G 144K /usr/ports
mypool/usr/src 144K 93.2G 144K /usr/src
mypool/var 1.29M 93.2G 614K /var
mypool/var/crash 148K 93.2G 148K /var/crash
mypool/var/log 178K 93.2G 178K /var/log
mypool/var/mail 144K 93.2G 144K /var/mail
mypool/var/newname 87.5K 93.2G 87.5K /var/newname
mypool/var/tmp 152K 93.2G 152K /var/tmp
Snapshots can also be renamed like this. Due to the
	nature of snapshots, they cannot be renamed into a different
	parent dataset. To rename a recursive snapshot, specify
	-r, and all snapshots with the same name in
	child datasets with also be renamed.
zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
mypool/var/newname@first_snapshot 0 - 87.5K -
zfs rename mypool/var/newname@first_snapshot new_snapshot_name
zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
mypool/var/newname@new_snapshot_name 0 - 87.5K -
19.4.4. Setting Dataset Properties
Each ZFS dataset has a number of
	properties that control its behavior. Most properties are
	automatically inherited from the parent dataset, but can be
	overridden locally. Set a property on a dataset with
	zfs set
	 property=value
	 dataset. Most
	properties have a limited set of valid values,
	zfs get will display each possible property
	and valid values. Most properties can be reverted to their
	inherited values using zfs inherit.
User-defined properties can also be set. They become part
	of the dataset configuration and can be used to provide
	additional information about the dataset or its contents. To
	distinguish these custom properties from the ones supplied as
	part of ZFS, a colon (:)
	is used to create a custom namespace for the property.
zfs set custom:costcenter=1234 tank
zfs get custom:costcenter tank
NAME PROPERTY VALUE SOURCE
tank custom:costcenter 1234 local
To remove a custom property, use
	zfs inherit with -r. If
	the custom property is not defined in any of the parent
	datasets, it will be removed completely (although the changes
	are still recorded in the pool's history).
zfs inherit -r custom:costcenter tank
zfs get custom:costcenter tank
NAME PROPERTY VALUE SOURCE
tank custom:costcenter - -
zfs get all tank | grep custom:costcenter
#
19.4.4.1. Getting and Setting Share Properties
Two commonly used and useful dataset properties are the
	NFS and SMB share
	options. Setting these define if and how
	ZFS datasets may be shared on the network.
	At present, only setting sharing via NFS is
	supported on FreeBSD. To get the current status of
	a share, enter:
zfs get sharenfs mypool/usr/home
NAME PROPERTY VALUE SOURCE
mypool/usr/home sharenfs on local
zfs get sharesmb mypool/usr/home
NAME PROPERTY VALUE SOURCE
mypool/usr/home sharesmb off local
To enable sharing of a dataset, enter:
zfs set sharenfs=on mypool/usr/home
It is also possible to set additional options for sharing
 datasets through NFS, such as
 -alldirs, -maproot and
 -network. To set additional options to a
 dataset shared through NFS, enter:
zfs set sharenfs="-alldirs,-maproot=root,-network=192.168.1.0/24" mypool/usr/home
19.4.5. Managing Snapshots
Snapshots are one
	of the most powerful features of ZFS. A
	snapshot provides a read-only, point-in-time copy of the
	dataset. With Copy-On-Write (COW),
	snapshots can be created quickly by preserving the older
	version of the data on disk. If no snapshots exist, space is
	reclaimed for future use when data is rewritten or deleted.
	Snapshots preserve disk space by recording only the
	differences between the current dataset and a previous
	version. Snapshots are allowed only on whole datasets, not on
	individual files or directories. When a snapshot is created
	from a dataset, everything contained in it is duplicated.
	This includes the file system properties, files, directories,
	permissions, and so on. Snapshots use no additional space
	when they are first created, only consuming space as the
	blocks they reference are changed. Recursive snapshots taken
	with -r create a snapshot with the same name
	on the dataset and all of its children, providing a consistent
	moment-in-time snapshot of all of the file systems. This can
	be important when an application has files on multiple
	datasets that are related or dependent upon each other.
	Without snapshots, a backup would have copies of the files
	from different points in time.
Snapshots in ZFS provide a variety of
	features that even other file systems with snapshot
	functionality lack. A typical example of snapshot use is to
	have a quick way of backing up the current state of the file
	system when a risky action like a software installation or a
	system upgrade is performed. If the action fails, the
	snapshot can be rolled back and the system has the same state
	as when the snapshot was created. If the upgrade was
	successful, the snapshot can be deleted to free up space.
	Without snapshots, a failed upgrade often requires a restore
	from backup, which is tedious, time consuming, and may require
	downtime during which the system cannot be used. Snapshots
	can be rolled back quickly, even while the system is running
	in normal operation, with little or no downtime. The time
	savings are enormous with multi-terabyte storage systems and
	the time required to copy the data from backup. Snapshots are
	not a replacement for a complete backup of a pool, but can be
	used as a quick and easy way to store a copy of the dataset at
	a specific point in time.
19.4.5.1. Creating Snapshots
Snapshots are created with zfs snapshot
	 dataset@snapshotname.
	 Adding -r creates a snapshot recursively,
	 with the same name on all child datasets.
Create a recursive snapshot of the entire pool:
zfs list -t all
NAME USED AVAIL REFER MOUNTPOINT
mypool 780M 93.2G 144K none
mypool/ROOT 777M 93.2G 144K none
mypool/ROOT/default 777M 93.2G 777M /
mypool/tmp 176K 93.2G 176K /tmp
mypool/usr 616K 93.2G 144K /usr
mypool/usr/home 184K 93.2G 184K /usr/home
mypool/usr/ports 144K 93.2G 144K /usr/ports
mypool/usr/src 144K 93.2G 144K /usr/src
mypool/var 1.29M 93.2G 616K /var
mypool/var/crash 148K 93.2G 148K /var/crash
mypool/var/log 178K 93.2G 178K /var/log
mypool/var/mail 144K 93.2G 144K /var/mail
mypool/var/newname 87.5K 93.2G 87.5K /var/newname
mypool/var/newname@new_snapshot_name 0 - 87.5K -
mypool/var/tmp 152K 93.2G 152K /var/tmp
zfs snapshot -r mypool@my_recursive_snapshot
zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
mypool@my_recursive_snapshot 0 - 144K -
mypool/ROOT@my_recursive_snapshot 0 - 144K -
mypool/ROOT/default@my_recursive_snapshot 0 - 777M -
mypool/tmp@my_recursive_snapshot 0 - 176K -
mypool/usr@my_recursive_snapshot 0 - 144K -
mypool/usr/home@my_recursive_snapshot 0 - 184K -
mypool/usr/ports@my_recursive_snapshot 0 - 144K -
mypool/usr/src@my_recursive_snapshot 0 - 144K -
mypool/var@my_recursive_snapshot 0 - 616K -
mypool/var/crash@my_recursive_snapshot 0 - 148K -
mypool/var/log@my_recursive_snapshot 0 - 178K -
mypool/var/mail@my_recursive_snapshot 0 - 144K -
mypool/var/newname@new_snapshot_name 0 - 87.5K -
mypool/var/newname@my_recursive_snapshot 0 - 87.5K -
mypool/var/tmp@my_recursive_snapshot 0 - 152K -
Snapshots are not shown by a normal
	 zfs list operation. To list snapshots,
	 -t snapshot is appended to
	 zfs list. -t all
	 displays both file systems and snapshots.
Snapshots are not mounted directly, so no path is shown in
	 the MOUNTPOINT column. There is no
	 mention of available disk space in the
	 AVAIL column, as snapshots cannot be
	 written to after they are created. Compare the snapshot
	 to the original dataset from which it was created:
zfs list -rt all mypool/usr/home
NAME USED AVAIL REFER MOUNTPOINT
mypool/usr/home 184K 93.2G 184K /usr/home
mypool/usr/home@my_recursive_snapshot 0 - 184K -
Displaying both the dataset and the snapshot together
	 reveals how snapshots work in
	 COW fashion. They save
	 only the changes (delta) that were made
	 and not the complete file system contents all over again.
	 This means that snapshots take little space when few changes
	 are made. Space usage can be made even more apparent by
	 copying a file to the dataset, then making a second
	 snapshot:
cp /etc/passwd /var/tmp
zfs snapshot mypool/var/tmp@after_cp
zfs list -rt all mypool/var/tmp
NAME USED AVAIL REFER MOUNTPOINT
mypool/var/tmp 206K 93.2G 118K /var/tmp
mypool/var/tmp@my_recursive_snapshot 88K - 152K -
mypool/var/tmp@after_cp 0 - 118K -
The second snapshot contains only the changes to the
	 dataset after the copy operation. This yields enormous
	 space savings. Notice that the size of the snapshot
	 mypool/var/tmp@my_recursive_snapshot
	 also changed in the USED
	 column to indicate the changes between itself and the
	 snapshot taken afterwards.
19.4.5.2. Comparing Snapshots
ZFS provides a built-in command to compare the
	 differences in content between two snapshots. This is
	 helpful when many snapshots were taken over time and the
	 user wants to see how the file system has changed over time.
	 For example, zfs diff lets a user find
	 the latest snapshot that still contains a file that was
	 accidentally deleted. Doing this for the two snapshots that
	 were created in the previous section yields this
	 output:
zfs list -rt all mypool/var/tmp
NAME USED AVAIL REFER MOUNTPOINT
mypool/var/tmp 206K 93.2G 118K /var/tmp
mypool/var/tmp@my_recursive_snapshot 88K - 152K -
mypool/var/tmp@after_cp 0 - 118K -
zfs diff mypool/var/tmp@my_recursive_snapshot
M /var/tmp/
+ /var/tmp/passwd
The command lists the changes between the specified
	 snapshot (in this case
	 mypool/var/tmp@my_recursive_snapshot)
	 and the live file system. The first column shows the
	 type of change:
	+	The path or file was added.
	-	The path or file was deleted.
	M	The path or file was modified.
	R	The path or file was renamed.

Comparing the output with the table, it becomes clear
	 that passwd
	 was added after the snapshot
	 mypool/var/tmp@my_recursive_snapshot
	 was created. This also resulted in a modification to the
	 parent directory mounted at
	 /var/tmp.
Comparing two snapshots is helpful when using the
	 ZFS replication feature to transfer a
	 dataset to a different host for backup purposes.
Compare two snapshots by providing the full dataset name
	 and snapshot name of both datasets:
cp /var/tmp/passwd /var/tmp/passwd.copy
zfs snapshot mypool/var/tmp@diff_snapshot
zfs diff mypool/var/tmp@my_recursive_snapshot mypool/var/tmp@diff_snapshot
M /var/tmp/
+ /var/tmp/passwd
+ /var/tmp/passwd.copy
zfs diff mypool/var/tmp@my_recursive_snapshot mypool/var/tmp@after_cp
M /var/tmp/
+ /var/tmp/passwd
A backup administrator can compare two snapshots
	 received from the sending host and determine the actual
	 changes in the dataset. See the
	 Replication section for
	 more information.
19.4.5.3. Snapshot Rollback
When at least one snapshot is available, it can be
	 rolled back to at any time. Most of the time this is the
	 case when the current state of the dataset is no longer
	 required and an older version is preferred. Scenarios such
	 as local development tests have gone wrong, botched system
	 updates hampering the system's overall functionality, or the
	 requirement to restore accidentally deleted files or
	 directories are all too common occurrences. Luckily,
	 rolling back a snapshot is just as easy as typing
	 zfs rollback
	 snapshotname.
	 Depending on how many changes are involved, the operation
	 will finish in a certain amount of time. During that time,
	 the dataset always remains in a consistent state, much like
	 a database that conforms to ACID principles is performing a
	 rollback. This is happening while the dataset is live and
	 accessible without requiring a downtime. Once the snapshot
	 has been rolled back, the dataset has the same state as it
	 had when the snapshot was originally taken. All other data
	 in that dataset that was not part of the snapshot is
	 discarded. Taking a snapshot of the current state of the
	 dataset before rolling back to a previous one is a good idea
	 when some data is required later. This way, the user can
	 roll back and forth between snapshots without losing data
	 that is still valuable.
In the first example, a snapshot is rolled back because
	 of a careless rm operation that removes
	 too much data than was intended.
zfs list -rt all mypool/var/tmp
NAME USED AVAIL REFER MOUNTPOINT
mypool/var/tmp 262K 93.2G 120K /var/tmp
mypool/var/tmp@my_recursive_snapshot 88K - 152K -
mypool/var/tmp@after_cp 53.5K - 118K -
mypool/var/tmp@diff_snapshot 0 - 120K -
ls /var/tmp
passwd passwd.copy vi.recover
rm /var/tmp/passwd*
ls /var/tmp
vi.recover
At this point, the user realized that too many files
	 were deleted and wants them back. ZFS
	 provides an easy way to get them back using rollbacks, but
	 only when snapshots of important data are performed on a
	 regular basis. To get the files back and start over from
	 the last snapshot, issue the command:
zfs rollback mypool/var/tmp@diff_snapshot
ls /var/tmp
passwd passwd.copy vi.recover
The rollback operation restored the dataset to the state
	 of the last snapshot. It is also possible to roll back to a
	 snapshot that was taken much earlier and has other snapshots
	 that were created after it. When trying to do this,
	 ZFS will issue this warning:
zfs list -rt snapshot mypool/var/tmp
AME USED AVAIL REFER MOUNTPOINT
mypool/var/tmp@my_recursive_snapshot 88K - 152K -
mypool/var/tmp@after_cp 53.5K - 118K -
mypool/var/tmp@diff_snapshot 0 - 120K -
zfs rollback mypool/var/tmp@my_recursive_snapshot
cannot rollback to 'mypool/var/tmp@my_recursive_snapshot': more recent snapshots exist
use '-r' to force deletion of the following snapshots:
mypool/var/tmp@after_cp
mypool/var/tmp@diff_snapshot
This warning means that snapshots exist between the
	 current state of the dataset and the snapshot to which the
	 user wants to roll back. To complete the rollback, these
	 snapshots must be deleted. ZFS cannot
	 track all the changes between different states of the
	 dataset, because snapshots are read-only.
	 ZFS will not delete the affected
	 snapshots unless the user specifies -r to
	 indicate that this is the desired action. If that is the
	 intention, and the consequences of losing all intermediate
	 snapshots is understood, the command can be issued:
zfs rollback -r mypool/var/tmp@my_recursive_snapshot
zfs list -rt snapshot mypool/var/tmp
NAME USED AVAIL REFER MOUNTPOINT
mypool/var/tmp@my_recursive_snapshot 8K - 152K -
ls /var/tmp
vi.recover
The output from zfs list -t snapshot
	 confirms that the intermediate snapshots
	 were removed as a result of
	 zfs rollback -r.
19.4.5.4. Restoring Individual Files from Snapshots
Snapshots are mounted in a hidden directory under the
	 parent dataset:
	 .zfs/snapshots/snapshotname.
	 By default, these directories will not be displayed even
	 when a standard ls -a is issued.
	 Although the directory is not displayed, it is there
	 nevertheless and can be accessed like any normal directory.
	 The property named snapdir controls
	 whether these hidden directories show up in a directory
	 listing. Setting the property to visible
	 allows them to appear in the output of ls
	 and other commands that deal with directory contents.
zfs get snapdir mypool/var/tmp
NAME PROPERTY VALUE SOURCE
mypool/var/tmp snapdir hidden default
ls -a /var/tmp
. .. passwd vi.recover
zfs set snapdir=visible mypool/var/tmp
ls -a /var/tmp
. .. .zfs passwd vi.recover
Individual files can easily be restored to a previous
	 state by copying them from the snapshot back to the parent
	 dataset. The directory structure below
	 .zfs/snapshot has a directory named
	 exactly like the snapshots taken earlier to make it easier
	 to identify them. In the next example, it is assumed that a
	 file is to be restored from the hidden
	 .zfs directory by copying it from the
	 snapshot that contained the latest version of the
	 file:
rm /var/tmp/passwd
ls -a /var/tmp
. .. .zfs vi.recover
ls /var/tmp/.zfs/snapshot
after_cp my_recursive_snapshot
ls /var/tmp/.zfs/snapshot/after_cp
passwd vi.recover
cp /var/tmp/.zfs/snapshot/after_cp/passwd /var/tmp
When ls .zfs/snapshot was issued, the
	 snapdir property might have been set to
	 hidden, but it would still be possible to list the contents
	 of that directory. It is up to the administrator to decide
	 whether these directories will be displayed. It is possible
	 to display these for certain datasets and prevent it for
	 others. Copying files or directories from this hidden
	 .zfs/snapshot is simple enough. Trying
	 it the other way around results in this error:
cp /etc/rc.conf /var/tmp/.zfs/snapshot/after_cp/
cp: /var/tmp/.zfs/snapshot/after_cp/rc.conf: Read-only file system
The error reminds the user that snapshots are read-only
	 and cannot be changed after creation. Files cannot be
	 copied into or removed from snapshot directories because
	 that would change the state of the dataset they
	 represent.
Snapshots consume space based on how much the parent
	 file system has changed since the time of the snapshot. The
	 written property of a snapshot tracks how
	 much space is being used by the snapshot.
Snapshots are destroyed and the space reclaimed with
	 zfs destroy
	 dataset@snapshot.
	 Adding -r recursively removes all snapshots
	 with the same name under the parent dataset. Adding
	 -n -v to the command displays a list of the
	 snapshots that would be deleted and an estimate of how much
	 space would be reclaimed without performing the actual
	 destroy operation.
19.4.6. Managing Clones
A clone is a copy of a snapshot that is treated more like
	a regular dataset. Unlike a snapshot, a clone is not read
	only, is mounted, and can have its own properties. Once a
	clone has been created using zfs clone, the
	snapshot it was created from cannot be destroyed. The
	child/parent relationship between the clone and the snapshot
	can be reversed using zfs promote. After a
	clone has been promoted, the snapshot becomes a child of the
	clone, rather than of the original parent dataset. This will
	change how the space is accounted, but not actually change the
	amount of space consumed. The clone can be mounted at any
	point within the ZFS file system hierarchy,
	not just below the original location of the snapshot.
To demonstrate the clone feature, this example dataset is
	used:
zfs list -rt all camino/home/joe
NAME USED AVAIL REFER MOUNTPOINT
camino/home/joe 108K 1.3G 87K /usr/home/joe
camino/home/joe@plans 21K - 85.5K -
camino/home/joe@backup 0K - 87K -
A typical use for clones is to experiment with a specific
	dataset while keeping the snapshot around to fall back to in
	case something goes wrong. Since snapshots cannot be
	changed, a read/write clone of a snapshot is created. After
	the desired result is achieved in the clone, the clone can be
	promoted to a dataset and the old file system removed. This
	is not strictly necessary, as the clone and dataset can
	coexist without problems.
zfs clone camino/home/joe@backup camino/home/joenew
ls /usr/home/joe*
/usr/home/joe:
backup.txz plans.txt

/usr/home/joenew:
backup.txz plans.txt
df -h /usr/home
Filesystem Size Used Avail Capacity Mounted on
usr/home/joe 1.3G 31k 1.3G 0% /usr/home/joe
usr/home/joenew 1.3G 31k 1.3G 0% /usr/home/joenew
After a clone is created it is an exact copy of the state
	the dataset was in when the snapshot was taken. The clone can
	now be changed independently from its originating dataset.
	The only connection between the two is the snapshot.
	ZFS records this connection in the property
	origin. Once the dependency between the
	snapshot and the clone has been removed by promoting the clone
	using zfs promote, the
	origin of the clone is removed as it is now
	an independent dataset. This example demonstrates it:
zfs get origin camino/home/joenew
NAME PROPERTY VALUE SOURCE
camino/home/joenew origin camino/home/joe@backup -
zfs promote camino/home/joenew
zfs get origin camino/home/joenew
NAME PROPERTY VALUE SOURCE
camino/home/joenew origin - -
After making some changes like copying
	loader.conf to the promoted clone, for
	example, the old directory becomes obsolete in this case.
	Instead, the promoted clone can replace it. This can be
	achieved by two consecutive commands: zfs
	 destroy on the old dataset and zfs
	 rename on the clone to name it like the old
	dataset (it could also get an entirely different name).
cp /boot/defaults/loader.conf /usr/home/joenew
zfs destroy -f camino/home/joe
zfs rename camino/home/joenew camino/home/joe
ls /usr/home/joe
backup.txz loader.conf plans.txt
df -h /usr/home
Filesystem Size Used Avail Capacity Mounted on
usr/home/joe 1.3G 128k 1.3G 0% /usr/home/joe
The cloned snapshot is now handled like an ordinary
	dataset. It contains all the data from the original snapshot
	plus the files that were added to it like
	loader.conf. Clones can be used in
	different scenarios to provide useful features to ZFS users.
	For example, jails could be provided as snapshots containing
	different sets of installed applications. Users can clone
	these snapshots and add their own applications as they see
	fit. Once they are satisfied with the changes, the clones can
	be promoted to full datasets and provided to end users to work
	with like they would with a real dataset. This saves time and
	administrative overhead when providing these jails.
19.4.7. Replication
Keeping data on a single pool in one location exposes
	it to risks like theft and natural or human disasters. Making
	regular backups of the entire pool is vital.
	ZFS provides a built-in serialization
	feature that can send a stream representation of the data to
	standard output. Using this technique, it is possible to not
	only store the data on another pool connected to the local
	system, but also to send it over a network to another system.
	Snapshots are the basis for this replication (see the section
	on ZFS
	 snapshots). The commands used for replicating data
	are zfs send and
	zfs receive.
These examples demonstrate ZFS
	replication with these two pools:
zpool list
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
backup 960M 77K 896M - - 0% 0% 1.00x ONLINE -
mypool 984M 43.7M 940M - - 0% 4% 1.00x ONLINE -
The pool named mypool is the
	primary pool where data is written to and read from on a
	regular basis. A second pool,
	backup is used as a standby in case
	the primary pool becomes unavailable. Note that this
	fail-over is not done automatically by ZFS,
	but must be manually done by a system administrator when
	needed. A snapshot is used to provide a consistent version of
	the file system to be replicated. Once a snapshot of
	mypool has been created, it can be
	copied to the backup pool. Only
	snapshots can be replicated. Changes made since the most
	recent snapshot will not be included.
zfs snapshot mypool@backup1
zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
mypool@backup1 0 - 43.6M -
Now that a snapshot exists, zfs send
	can be used to create a stream representing the contents of
	the snapshot. This stream can be stored as a file or received
	by another pool. The stream is written to standard output,
	but must be redirected to a file or pipe or an error is
	produced:
zfs send mypool@backup1
Error: Stream can not be written to a terminal.
You must redirect standard output.
To back up a dataset with zfs send,
	redirect to a file located on the mounted backup pool. Ensure
	that the pool has enough free space to accommodate the size of
	the snapshot being sent, which means all of the data contained
	in the snapshot, not just the changes from the previous
	snapshot.
zfs send mypool@backup1 > /backup/backup1
zpool list
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
backup 960M 63.7M 896M - - 0% 6% 1.00x ONLINE -
mypool 984M 43.7M 940M - - 0% 4% 1.00x ONLINE -
The zfs send transferred all the data
	in the snapshot called backup1 to
	the pool named backup. Creating
	and sending these snapshots can be done automatically with a
	cron(8) job.
Instead of storing the backups as archive files,
	ZFS can receive them as a live file system,
	allowing the backed up data to be accessed directly. To get
	to the actual data contained in those streams,
	zfs receive is used to transform the
	streams back into files and directories. The example below
	combines zfs send and
	zfs receive using a pipe to copy the data
	from one pool to another. The data can be used directly on
	the receiving pool after the transfer is complete. A dataset
	can only be replicated to an empty dataset.
zfs snapshot mypool@replica1
zfs send -v mypool@replica1 | zfs receive backup/mypool
send from @ to mypool@replica1 estimated size is 50.1M
total estimated size is 50.1M
TIME SENT SNAPSHOT

zpool list
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
backup 960M 63.7M 896M - - 0% 6% 1.00x ONLINE -
mypool 984M 43.7M 940M - - 0% 4% 1.00x ONLINE -
19.4.7.1. Incremental Backups
zfs send can also determine the
	 difference between two snapshots and send only the
	 differences between the two. This saves disk space and
	 transfer time. For example:
zfs snapshot mypool@replica2
zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
mypool@replica1 5.72M - 43.6M -
mypool@replica2 0 - 44.1M -
zpool list
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
backup 960M 61.7M 898M - - 0% 6% 1.00x ONLINE -
mypool 960M 50.2M 910M - - 0% 5% 1.00x ONLINE -
A second snapshot called
	 replica2 was created. This
	 second snapshot contains only the changes that were made to
	 the file system between now and the previous snapshot,
	 replica1. Using
	 zfs send -i and indicating the pair of
	 snapshots generates an incremental replica stream containing
	 only the data that has changed. This can only succeed if
	 the initial snapshot already exists on the receiving
	 side.
zfs send -v -i mypool@replica1 mypool@replica2 | zfs receive /backup/mypool
send from @replica1 to mypool@replica2 estimated size is 5.02M
total estimated size is 5.02M
TIME SENT SNAPSHOT

zpool list
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
backup 960M 80.8M 879M - - 0% 8% 1.00x ONLINE -
mypool 960M 50.2M 910M - - 0% 5% 1.00x ONLINE -

zfs list
NAME USED AVAIL REFER MOUNTPOINT
backup 55.4M 240G 152K /backup
backup/mypool 55.3M 240G 55.2M /backup/mypool
mypool 55.6M 11.6G 55.0M /mypool

zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
backup/mypool@replica1 104K - 50.2M -
backup/mypool@replica2 0 - 55.2M -
mypool@replica1 29.9K - 50.0M -
mypool@replica2 0 - 55.0M -
The incremental stream was successfully transferred.
	 Only the data that had changed was replicated, rather than
	 the entirety of replica1. Only
	 the differences were sent, which took much less time to
	 transfer and saved disk space by not copying the complete
	 pool each time. This is useful when having to rely on slow
	 networks or when costs per transferred byte must be
	 considered.
A new file system,
	 backup/mypool, is available with
	 all of the files and data from the pool
	 mypool. If -P
	 is specified, the properties of the dataset will be copied,
	 including compression settings, quotas, and mount points.
	 When -R is specified, all child datasets of
	 the indicated dataset will be copied, along with all of
	 their properties. Sending and receiving can be automated so
	 that regular backups are created on the second pool.
19.4.7.2. Sending Encrypted Backups over
	 SSH
Sending streams over the network is a good way to keep a
	 remote backup, but it does come with a drawback. Data sent
	 over the network link is not encrypted, allowing anyone to
	 intercept and transform the streams back into data without
	 the knowledge of the sending user. This is undesirable,
	 especially when sending the streams over the internet to a
	 remote host. SSH can be used to
	 securely encrypt data send over a network connection. Since
	 ZFS only requires the stream to be
	 redirected from standard output, it is relatively easy to
	 pipe it through SSH. To keep the
	 contents of the file system encrypted in transit and on the
	 remote system, consider using PEFS.
A few settings and security precautions must be
	 completed first. Only the necessary steps required for the
	 zfs send operation are shown here. For
	 more information on SSH, see
	 Section 13.8, “OpenSSH”.
This configuration is required:
	Passwordless SSH access
	 between sending and receiving host using
	 SSH keys

	Normally, the privileges of the
	 root user are
	 needed to send and receive streams. This requires
	 logging in to the receiving system as
	 root.
	 However, logging in as
	 root is
	 disabled by default for security reasons. The
	 ZFS Delegation
	 system can be used to allow a
	 non-root user
	 on each system to perform the respective send and
	 receive operations.

	On the sending system:
zfs allow -u someuser send,snapshot mypool

	To mount the pool, the unprivileged user must own
	 the directory, and regular users must be allowed to
	 mount file systems. On the receiving system:
sysctl vfs.usermount=1
vfs.usermount: 0 -> 1
echo vfs.usermount=1 >> /etc/sysctl.conf
zfs create recvpool/backup
zfs allow -u someuser create,mount,receive recvpool/backup
chown someuser /recvpool/backup

The unprivileged user now has the ability to receive and
	 mount datasets, and the home
	 dataset can be replicated to the remote system:
% zfs snapshot -r mypool/home@monday
% zfs send -R mypool/home@monday | ssh someuser@backuphost zfs recv -dvu recvpool/backup
A recursive snapshot called
	 monday is made of the file system
	 dataset home that resides on the
	 pool mypool. Then it is sent
	 with zfs send -R to include the dataset,
	 all child datasets, snapshots, clones, and settings in the
	 stream. The output is piped to the waiting
	 zfs receive on the remote host
	 backuphost through
	 SSH. Using a fully qualified
	 domain name or IP address is recommended. The receiving
	 machine writes the data to the
	 backup dataset on the
	 recvpool pool. Adding
	 -d to zfs recv
	 overwrites the name of the pool on the receiving side with
	 the name of the snapshot. -u causes the
	 file systems to not be mounted on the receiving side. When
	 -v is included, more detail about the
	 transfer is shown, including elapsed time and the amount of
	 data transferred.
19.4.8. Dataset, User, and Group Quotas
Dataset quotas are
	used to restrict the amount of space that can be consumed
	by a particular dataset.
	Reference Quotas work
	in very much the same way, but only count the space
	used by the dataset itself, excluding snapshots and child
	datasets. Similarly,
	user and
	group quotas can be
	used to prevent users or groups from using all of the
	space in the pool or dataset.
The following examples assume that the users already
	exist in the system. Before adding a user to the system,
	make sure to create their home dataset first and set the
	mountpoint to
	/home/bob.
	Then, create the user and make the home directory point to
	the dataset's mountpoint location. This will
	properly set owner and group permissions without shadowing any
	pre-existing home directory paths that might exist.
To enforce a dataset quota of 10 GB for
	storage/home/bob:
zfs set quota=10G storage/home/bob
To enforce a reference quota of 10 GB for
	storage/home/bob:
zfs set refquota=10G storage/home/bob
To remove a quota of 10 GB for
	storage/home/bob:
zfs set quota=none storage/home/bob
The general format is
	userquota@user=size,
	and the user's name must be in one of these formats:
	POSIX compatible name such as
	 joe.

	POSIX numeric ID such as
	 789.

	SID name
	 such as
	 joe.bloggs@example.com.

	SID
	 numeric ID such as
	 S-1-123-456-789.

For example, to enforce a user quota of 50 GB for the
	user named joe:
zfs set userquota@joe=50G
To remove any quota:
zfs set userquota@joe=none
Note:
User quota properties are not displayed by
	 zfs get all.
	 Non-root users can
	 only see their own quotas unless they have been granted the
	 userquota privilege. Users with this
	 privilege are able to view and set everyone's quota.

The general format for setting a group quota is:
	groupquota@group=size.
To set the quota for the group
	firstgroup to 50 GB,
	use:
zfs set groupquota@firstgroup=50G
To remove the quota for the group
	firstgroup, or to make sure that
	one is not set, instead use:
zfs set groupquota@firstgroup=none
As with the user quota property,
	non-root users can
	only see the quotas associated with the groups to which they
	belong. However,
	root or a user with
	the groupquota privilege can view and set
	all quotas for all groups.
To display the amount of space used by each user on
	a file system or snapshot along with any quotas, use
	zfs userspace. For group information, use
	zfs groupspace. For more information about
	supported options or how to display only specific options,
	refer to zfs(1).
Users with sufficient privileges, and
	root, can list the
	quota for storage/home/bob using:
zfs get quota storage/home/bob
19.4.9. Reservations
Reservations
	guarantee a minimum amount of space will always be available
	on a dataset. The reserved space will not be available to any
	other dataset. This feature can be especially useful to
	ensure that free space is available for an important dataset
	or log files.
The general format of the reservation
	property is
	reservation=size,
	so to set a reservation of 10 GB on
	storage/home/bob, use:
zfs set reservation=10G storage/home/bob
To clear any reservation:
zfs set reservation=none storage/home/bob
The same principle can be applied to the
	refreservation property for setting a
	Reference
	 Reservation, with the general format
	refreservation=size.
This command shows any reservations or refreservations
	that exist on storage/home/bob:
zfs get reservation storage/home/bob
zfs get refreservation storage/home/bob
19.4.10. Compression
ZFS provides transparent compression.
	Compressing data at the block level as it is written not only
	saves space, but can also increase disk throughput. If data
	is compressed by 25%, but the compressed data is written to
	the disk at the same rate as the uncompressed version,
	resulting in an effective write speed of 125%. Compression
	can also be a great alternative to
	Deduplication
	because it does not require additional memory.
ZFS offers several different
	compression algorithms, each with different trade-offs. With
	the introduction of LZ4 compression in
	ZFS v5000, it is possible to enable
	compression for the entire pool without the large performance
	trade-off of other algorithms. The biggest advantage to
	LZ4 is the early abort
	feature. If LZ4 does not achieve at least
	12.5% compression in the first part of the data, the block is
	written uncompressed to avoid wasting CPU cycles trying to
	compress data that is either already compressed or
	uncompressible. For details about the different compression
	algorithms available in ZFS, see the
	Compression entry
	in the terminology section.
The administrator can monitor the effectiveness of
	compression using a number of dataset properties.
zfs get used,compressratio,compression,logicalused mypool/compressed_dataset
NAME PROPERTY VALUE SOURCE
mypool/compressed_dataset used 449G -
mypool/compressed_dataset compressratio 1.11x -
mypool/compressed_dataset compression lz4 local
mypool/compressed_dataset logicalused 496G -
The dataset is currently using 449 GB of space (the
	used property). Without compression, it would have taken
	496 GB of space (the logicalused
	property). This results in the 1.11:1 compression
	ratio.
Compression can have an unexpected side effect when
	combined with
	User Quotas.
	User quotas restrict how much space a user can consume on a
	dataset, but the measurements are based on how much space is
	used after compression. So if a user has
	a quota of 10 GB, and writes 10 GB of compressible
	data, they will still be able to store additional data. If
	they later update a file, say a database, with more or less
	compressible data, the amount of space available to them will
	change. This can result in the odd situation where a user did
	not increase the actual amount of data (the
	logicalused property), but the change in
	compression caused them to reach their quota limit.
Compression can have a similar unexpected interaction with
	backups. Quotas are often used to limit how much data can be
	stored to ensure there is sufficient backup space available.
	However since quotas do not consider compression, more data
	may be written than would fit with uncompressed
	backups.
19.4.11. Deduplication
When enabled,
	deduplication
	uses the checksum of each block to detect duplicate blocks.
	When a new block is a duplicate of an existing block,
	ZFS writes an additional reference to the
	existing data instead of the whole duplicate block.
	Tremendous space savings are possible if the data contains
	many duplicated files or repeated information. Be warned:
	deduplication requires an extremely large amount of memory,
	and most of the space savings can be had without the extra
	cost by enabling compression instead.
To activate deduplication, set the
	dedup property on the target pool:
zfs set dedup=on pool
Only new data being written to the pool will be
	deduplicated. Data that has already been written to the pool
	will not be deduplicated merely by activating this option. A
	pool with a freshly activated deduplication property will look
	like this example:
zpool list
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
pool 2.84G 2.19M 2.83G - - 0% 0% 1.00x ONLINE -
The DEDUP column shows the actual rate
	of deduplication for the pool. A value of
	1.00x shows that data has not been
	deduplicated yet. In the next example, the ports tree is
	copied three times into different directories on the
	deduplicated pool created above.
for d in dir1 dir2 dir3; do
> mkdir $d && cp -R /usr/ports $d &
> done
Redundant data is detected and deduplicated:
zpool list
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
pool 2.84G 20.9M 2.82G - - 0% 0% 3.00x ONLINE -
The DEDUP column shows a factor of
	3.00x. Multiple copies of the ports tree
	data was detected and deduplicated, using only a third of the
	space. The potential for space savings can be enormous, but
	comes at the cost of having enough memory to keep track of the
	deduplicated blocks.
Deduplication is not always beneficial, especially when
	the data on a pool is not redundant.
	ZFS can show potential space savings by
	simulating deduplication on an existing pool:
zdb -S pool
Simulated DDT histogram:

bucket allocated referenced
______ ______________________________ ______________________________
refcnt blocks LSIZE PSIZE DSIZE blocks LSIZE PSIZE DSIZE
------ ------ ----- ----- ----- ------ ----- ----- -----
 1 2.58M 289G 264G 264G 2.58M 289G 264G 264G
 2 206K 12.6G 10.4G 10.4G 430K 26.4G 21.6G 21.6G
 4 37.6K 692M 276M 276M 170K 3.04G 1.26G 1.26G
 8 2.18K 45.2M 19.4M 19.4M 20.0K 425M 176M 176M
 16 174 2.83M 1.20M 1.20M 3.33K 48.4M 20.4M 20.4M
 32 40 2.17M 222K 222K 1.70K 97.2M 9.91M 9.91M
 64 9 56K 10.5K 10.5K 865 4.96M 948K 948K
 128 2 9.50K 2K 2K 419 2.11M 438K 438K
 256 5 61.5K 12K 12K 1.90K 23.0M 4.47M 4.47M
 1K 2 1K 1K 1K 2.98K 1.49M 1.49M 1.49M
 Total 2.82M 303G 275G 275G 3.20M 319G 287G 287G

dedup = 1.05, compress = 1.11, copies = 1.00, dedup * compress / copies = 1.16
After zdb -S finishes analyzing the
	pool, it shows the space reduction ratio that would be
	achieved by activating deduplication. In this case,
	1.16 is a very poor space saving ratio that
	is mostly provided by compression. Activating deduplication
	on this pool would not save any significant amount of space,
	and is not worth the amount of memory required to enable
	deduplication. Using the formula
	ratio = dedup * compress / copies,
	system administrators can plan the storage allocation,
	deciding whether the workload will contain enough duplicate
	blocks to justify the memory requirements. If the data is
	reasonably compressible, the space savings may be very good.
	Enabling compression first is recommended, and compression can
	also provide greatly increased performance. Only enable
	deduplication in cases where the additional savings will be
	considerable and there is sufficient memory for the DDT.
19.4.12. ZFS and Jails
zfs jail and the corresponding
	jailed property are used to delegate a
	ZFS dataset to a
	Jail.
	zfs jail jailid
	attaches a dataset to the specified jail, and
	zfs unjail detaches it. For the dataset to
	be controlled from within a jail, the
	jailed property must be set. Once a
	dataset is jailed, it can no longer be mounted on the
	host because it may have mount points that would compromise
	the security of the host.
28.9. SMTP Authentication
Written by James Gorham. Configuring SMTP authentication on the
 MTA provides a number of benefits.
 SMTP authentication adds a layer
 of security to Sendmail, and provides
 mobile users who switch hosts the ability to use the same
 MTA without the need to reconfigure their
 mail client's settings each time.
	Install security/cyrus-sasl2
	 from the Ports Collection. This port supports a number of
	 compile-time options. For the SMTP authentication method
	 demonstrated in this example, make sure that
	 LOGIN is not disabled.

	After installing
	 security/cyrus-sasl2, edit
	 /usr/local/lib/sasl2/Sendmail.conf,
	 or create it if it does not exist, and add the following
	 line:
pwcheck_method: saslauthd

	Next, install
	 security/cyrus-sasl2-saslauthd and add
	 the following line to
	 /etc/rc.conf:
saslauthd_enable="YES"
Finally, start the saslauthd daemon:
service saslauthd start
This daemon serves as a broker for
	 Sendmail to authenticate against
	 the FreeBSD passwd(5) database. This saves the trouble of
	 creating a new set of usernames and passwords for each user
	 that needs to use SMTP authentication,
	 and keeps the login and mail password the same.

	Next, edit /etc/make.conf and add
	 the following lines:
SENDMAIL_CFLAGS=-I/usr/local/include/sasl -DSASL
SENDMAIL_LDADD=/usr/local/lib/libsasl2.so
These lines provide Sendmail
	 the proper configuration options for linking to
	 cyrus-sasl2 at compile time. Make sure
	 that cyrus-sasl2 has been installed
	 before recompiling
	 Sendmail.

	Recompile Sendmail by
	 executing the following commands:
cd /usr/src/lib/libsmutil
make cleandir && make obj && make
cd /usr/src/lib/libsm
make cleandir && make obj && make
cd /usr/src/usr.sbin/sendmail
make cleandir && make obj && make && make install
This compile should not have any problems if
	 /usr/src has not changed extensively
	 and the shared libraries it needs are available.

	After Sendmail has been
	 compiled and reinstalled, edit
	 /etc/mail/freebsd.mc or the local
	 .mc. Many administrators choose
	 to use the output from hostname(1) as the name of
	 .mc for uniqueness. Add these
	 lines:
dnl set SASL options
TRUST_AUTH_MECH(`GSSAPI DIGEST-MD5 CRAM-MD5 LOGIN')dnl
define(`confAUTH_MECHANISMS', `GSSAPI DIGEST-MD5 CRAM-MD5 LOGIN')dnl
These options configure the different methods available
	 to Sendmail for authenticating
	 users. To use a method other than
	 pwcheck, refer to the
	 Sendmail documentation.

	Finally, run make(1) while in
	 /etc/mail. That will run the new
	 .mc and create a
	 .cf named either
	 freebsd.cf or the name used for the
	 local .mc. Then, run make
	 install restart, which will copy the file to
	 sendmail.cf, and properly restart
	 Sendmail. For more information
	 about this process, refer to
	 /etc/mail/Makefile.

To test the configuration, use a MUA to
 send a test message. For further investigation, set the
 LogLevel of Sendmail
 to 13 and watch
 /var/log/maillog for any errors.
For more information, refer to
	SMTP authentication.
Chapter 20. Other File Systems
Written
	by Tom Rhodes. 20.1. Synopsis
File systems are an integral part of any operating system.
 They allow users to upload and store files, provide access to
 data, and make hard drives useful. Different operating systems
 differ in their native file system. Traditionally, the native
 FreeBSD file system has been the Unix File System
 UFS which has been modernized as
 UFS2. Since FreeBSD 7.0, the Z File System
 (ZFS) is also available as a native file
 system. See Chapter 19, The Z File System (ZFS) for more information.
In addition to its native file systems, FreeBSD supports a
 multitude of other file systems so that data from other
 operating systems can be accessed locally, such as data stored
 on locally attached USB storage devices,
 flash drives, and hard disks. This includes support for the
 Linux® Extended File System (EXT).
There are different levels of FreeBSD support for the various
 file systems. Some require a kernel module to be loaded and
 others may require a toolset to be installed. Some non-native
 file system support is full read-write while others are
 read-only.
After reading this chapter, you will know:
	The difference between native and supported file
	 systems.

	Which file systems are supported by FreeBSD.

	How to enable, configure, access, and make use of
	 non-native file systems.

Before reading this chapter, you should:
	Understand UNIX® and
	 FreeBSD basics.

	Be familiar with the basics of kernel configuration and
	 compilation.

	Feel comfortable installing
	 software in FreeBSD.

	Have some familiarity with disks, storage, and device names in
	 FreeBSD.

30.3. PF
Revised and updated by John Ferrell. Since FreeBSD 5.3, a ported version of OpenBSD's
 PF firewall has been included as an
 integrated part of the base system.
 PF is a complete, full-featured
 firewall that has optional support for
 ALTQ (Alternate Queuing), which
 provides Quality of Service (QoS).
The OpenBSD Project maintains the definitive reference for
 PF in the PF FAQ.
 Peter Hansteen maintains a thorough
 PF tutorial at http://home.nuug.no/~peter/pf/.
Warning:
When reading the PF FAQ,
	keep in mind that FreeBSD's version of
	PF has diverged substantially from
	the upstream OpenBSD version over the years. Not all features
	work the same way on FreeBSD as they do in OpenBSD and vice
	versa.

The FreeBSD packet filter mailing list is a good place to ask questions about
 configuring and running the PF
 firewall. Check the mailing list archives before asking a
 question as it may have already been answered.
This section of the Handbook focuses on
 PF as it pertains to FreeBSD. It
 demonstrates how to enable PF and
 ALTQ. It also provides several
 examples for creating rulesets on a FreeBSD system.
30.3.1. Enabling PF
To use PF, its kernel
	module must be first loaded. This section describes the
	entries that can be added to /etc/rc.conf
	to enable PF.
Start by adding pf_enable=yes to
	/etc/rc.conf:
sysrc pf_enable=yes
Additional options, described in pfctl(8), can be
	passed to PF when it is started.
	Add or change this entry in /etc/rc.conf
	and specify any required flags between the two quotes
	(""):
pf_flags="" # additional flags for pfctl startup
PF will not start if it cannot
	find its ruleset configuration file. By default, FreeBSD does
	not ship with a ruleset and there is no
	/etc/pf.conf. Example rulesets can be
	found in /usr/share/examples/pf/. If a
	custom ruleset has been saved somewhere else, add a line to
	/etc/rc.conf which specifies the full
	path to the file:
pf_rules="/path/to/pf.conf"
Logging support for PF is
	provided by pflog(4). To enable logging support, add
	pflog_enable=yes to
	/etc/rc.conf:
sysrc pflog_enable=yes
The following lines can also be added to change the
	default location of the log file or to specify any additional
	flags to pass to pflog(4) when it is started:
pflog_logfile="/var/log/pflog" # where pflogd should store the logfile
pflog_flags="" # additional flags for pflogd startup
Finally, if there is a LAN behind the
	firewall and packets need to be forwarded for the computers on
	the LAN, or NAT is
	required, enable the following option:
gateway_enable="YES" # Enable as LAN gateway
After saving the needed edits,
	PF can be started with logging
	support by typing:
service pf start
service pflog start
By default, PF reads its
	configuration rules from /etc/pf.conf and
	modifies, drops, or passes packets according to the rules or
	definitions specified in this file. The FreeBSD installation
	includes several sample files located in
	/usr/share/examples/pf/. Refer to the
	PF
	 FAQ for complete coverage
	of PF rulesets.
To control PF, use
	pfctl. Table 30.1, “Useful pfctl Options” summarizes
	some useful options to this command. Refer to pfctl(8)
	for a description of all available options:
Table 30.1. Useful pfctl Options
	Command	Purpose
	pfctl
		 -e	Enable PF.
	pfctl
		 -d	Disable PF.
	pfctl -F all
		 -f /etc/pf.conf	Flush all NAT, filter, state,
		and table rules and reload
		/etc/pf.conf.
	pfctl -s [rules | nat |
		 states]	Report on the filter rules,
		NAT rules, or state
		table.
	pfctl -vnf
		 /etc/pf.conf	Check /etc/pf.conf for
		errors, but do not load ruleset.

Tip:
security/sudo is useful for running
	 commands like pfctl that require elevated
	 privileges. It can be installed from the Ports
	 Collection.

To keep an eye on the traffic that passes through the
	PF firewall, consider installing
	the sysutils/pftop package or port. Once
	installed, pftop can be run to
	view a running snapshot of traffic in a format which is
	similar to top(1).
30.3.2. PF Rulesets
Contributed by Peter N. M. Hansteen. This section demonstrates how to create a customized
	ruleset. It starts with the simplest of rulesets and builds
	upon its concepts using several examples to demonstrate
	real-world usage of PF's many
	features.
The simplest possible ruleset is for a single machine
	that does not run any services and which needs access to one
	network, which may be the Internet. To create this minimal
	ruleset, edit /etc/pf.conf so it looks
	like this:
block in all
pass out all keep state
The first rule denies all incoming traffic by default.
	The second rule allows connections created by this system to
	pass out, while retaining state information on those
	connections. This state information allows return traffic for
	those connections to pass back and should only be used on
	machines that can be trusted. The ruleset can be loaded
	with:
pfctl -e ; pfctl -f /etc/pf.conf
In addition to keeping state,
	PF provides
	lists and
	macros which can be defined for use
	when creating rules. Macros can include lists and need to be
	defined before use. As an example, insert these lines at the
	very top of the ruleset:
tcp_services = "{ ssh, smtp, domain, www, pop3, auth, pop3s }"
udp_services = "{ domain }"
PF understands port names as
	well as port numbers, as long as the names are listed in
	/etc/services. This example creates two
	macros. The first is a list of seven
	TCP port names and the second is one
	UDP port name. Once defined, macros can be
	used in rules. In this example, all traffic is blocked except
	for the connections initiated by this system for the seven
	specified TCP services and the one
	specified UDP service:
tcp_services = "{ ssh, smtp, domain, www, pop3, auth, pop3s }"
udp_services = "{ domain }"
block all
pass out proto tcp to any port $tcp_services keep state
pass proto udp to any port $udp_services keep state
Even though UDP is considered to be a
	stateless protocol, PF is able to
	track some state information. For example, when a
	UDP request is passed which asks a name
	server about a domain name, PF will
	watch for the response to pass it back.
Whenever an edit is made to a ruleset, the new rules must
	be loaded so they can be used:
pfctl -f /etc/pf.conf
If there are no syntax errors, pfctl
	will not output any messages during the rule load. Rules can
	also be tested before attempting to load them:
pfctl -nf /etc/pf.conf
Including -n causes the rules to be
	interpreted only, but not loaded. This provides an
	opportunity to correct any errors. At all times, the last
	valid ruleset loaded will be enforced until either
	PF is disabled or a new ruleset is
	loaded.
Tip:
Adding -v to a pfctl
	 ruleset verify or load will display the fully parsed rules
	 exactly the way they will be loaded. This is extremely
	 useful when debugging rules.

30.3.2.1. A Simple Gateway with NAT
This section demonstrates how to configure a FreeBSD system
	 running PF to act as a gateway
	 for at least one other machine. The gateway needs at least
	 two network interfaces, each connected to a separate
	 network. In this example, xl0 is
	 connected to the Internet and xl1 is
	 connected to the internal network.
First, enable the gateway to let the machine
	 forward the network traffic it receives on one interface to
	 another interface. This sysctl
	 setting will forward IPv4 packets:
sysctl net.inet.ip.forwarding=1
To forward IPv6 traffic, use:
sysctl net.inet6.ip6.forwarding=1
To enable these settings at system boot, use
	 sysrc(8) to add them to
	 /etc/rc.conf:
sysrc gateway_enable=yes
sysrc ipv6_gateway_enable=yes
Verify with ifconfig that both of the
	 interfaces are up and running.
Next, create the PF rules to
	 allow the gateway to pass traffic. While the following rule
	 allows stateful traffic from hosts of the internal network
	 to pass to the gateway, the to keyword
	 does not guarantee passage all the way from source to
	 destination:
pass in on xl1 from xl1:network to xl0:network port $ports keep state
That rule only lets the traffic pass in to the gateway
	 on the internal interface. To let the packets go further, a
	 matching rule is needed:
pass out on xl0 from xl1:network to xl0:network port $ports keep state
While these two rules will work, rules this specific are
	 rarely needed. For a busy network admin, a readable ruleset
	 is a safer ruleset. The remainder of this section
	 demonstrates how to keep the rules as simple as possible for
	 readability. For example, those two rules could be
	 replaced with one rule:
pass from xl1:network to any port $ports keep state
The interface:network notation can be
	 replaced with a macro to make the ruleset even more
	 readable. For example, a $localnet macro
	 could be defined as the network directly attached to the
	 internal interface ($xl1:network).
	 Alternatively, the definition of
	 $localnet could be changed to an
	 IP address/netmask notation to denote
	 a network, such as 192.168.100.1/24 for a
	 subnet of private addresses.
If required, $localnet could even be
	 defined as a list of networks. Whatever the specific needs,
	 a sensible $localnet definition could be
	 used in a typical pass rule as follows:
pass from $localnet to any port $ports keep state
The following sample ruleset allows all traffic
	 initiated by machines on the internal network. It first
	 defines two macros to represent the external and internal
	 3COM interfaces of the gateway.
Note:
For dialup users, the external interface will use
	 tun0. For an
	 ADSL connection, specifically those
	 using PPP over Ethernet
	 (PPPoE), the correct external
	 interface is tun0, not the physical
	 Ethernet interface.

ext_if = "xl0"	# macro for external interface - use tun0 for PPPoE
int_if = "xl1"	# macro for internal interface
localnet = $int_if:network
ext_if IP address could be dynamic, hence ($ext_if)
nat on $ext_if from $localnet to any -> ($ext_if)
block all
pass from { lo0, $localnet } to any keep state
This ruleset introduces the nat rule
	 which is used to handle the network address translation from
	 the non-routable addresses inside the internal network to
	 the IP address assigned to the external
	 interface. The parentheses surrounding the last part of the
	 nat rule ($ext_if) is included when the
	 IP address of the external interface is
	 dynamically assigned. It ensures that network traffic runs
	 without serious interruptions even if the external
	 IP address changes.
Note that this ruleset probably allows more traffic to
	 pass out of the network than is needed. One reasonable
	 setup could create this macro:
client_out = "{ ftp-data, ftp, ssh, domain, pop3, auth, nntp, http, \
 https, cvspserver, 2628, 5999, 8000, 8080 }"
to use in the main pass rule:
pass inet proto tcp from $localnet to any port $client_out \
 flags S/SA keep state
A few other pass rules may be needed. This one enables
	 SSH on the external interface:
pass in inet proto tcp to $ext_if port ssh
This macro definition and rule allows
	 DNS and NTP for
	 internal clients:
udp_services = "{ domain, ntp }"
pass quick inet proto { tcp, udp } to any port $udp_services keep state
Note the quick keyword in this rule.
	 Since the ruleset consists of several rules, it is important
	 to understand the relationships between the rules in a
	 ruleset. Rules are evaluated from top to bottom, in the
	 sequence they are written. For each packet or connection
	 evaluated by PF,
	 the last matching rule in the ruleset
	 is the one which is applied. However, when a packet matches
	 a rule which contains the quick keyword,
	 the rule processing stops and the packet is treated
	 according to that rule. This is very useful when an
	 exception to the general rules is needed.
30.3.2.2. Creating an FTP Proxy
Configuring working FTP rules can be
	 problematic due to the nature of the FTP
	 protocol. FTP pre-dates firewalls by
	 several decades and is insecure in its design. The most
	 common points against using FTP
	 include:
	Passwords are transferred in the clear.

	The protocol demands the use of at least two
	 TCP connections (control and data) on
	 separate ports.

	When a session is established, data is communicated
	 using randomly selected ports.

All of these points present security challenges, even
	 before considering any potential security weaknesses in
	 client or server software. More secure alternatives for
	 file transfer exist, such as sftp(1) or scp(1),
	 which both feature authentication and data transfer over
	 encrypted connections..
For those situations when FTP is
	 required, PF provides
	 redirection of FTP traffic to a small
	 proxy program called ftp-proxy(8), which is included in
	 the base system of FreeBSD. The role of the proxy is to
	 dynamically insert and delete rules in the ruleset, using a
	 set of anchors, to correctly handle
	 FTP traffic.
To enable the FTP proxy, add this
	 line to /etc/rc.conf:
ftpproxy_enable="YES"
Then start the proxy by running service
	 ftp-proxy start.
For a basic configuration, three elements need to be
	 added to /etc/pf.conf. First, the
	 anchors which the proxy will use to insert the rules it
	 generates for the FTP sessions:
nat-anchor "ftp-proxy/*"
rdr-anchor "ftp-proxy/*"
Second, a pass rule is needed to allow
	 FTP traffic in to the proxy.
Third, redirection and NAT rules need
	 to be defined before the filtering rules. Insert this
	 rdr rule immediately after the
	 nat rule:
rdr pass on $int_if proto tcp from any to any port ftp -> 127.0.0.1 port 8021
Finally, allow the redirected traffic to pass:
pass out proto tcp from $proxy to any port ftp
where $proxy expands to the address
	 the proxy daemon is bound to.
Save /etc/pf.conf, load the new
	 rules, and verify from a client that FTP
	 connections are working:
pfctl -f /etc/pf.conf
This example covers a basic setup where the clients in
	 the local network need to contact FTP
	 servers elsewhere. This basic configuration should
	 work well with most combinations of FTP
	 clients and servers. As shown in ftp-proxy(8), the
	 proxy's behavior can be changed in various ways by adding
	 options to the ftpproxy_flags= line.
	 Some clients or servers may have specific quirks that must
	 be compensated for in the configuration, or there may be a
	 need to integrate the proxy in specific ways such as
	 assigning FTP traffic to a specific
	 queue.
For ways to run an FTP server
	 protected by PF and
	 ftp-proxy(8), configure a separate
	 ftp-proxy in reverse mode, using
	 -R, on a separate port with its own
	 redirecting pass rule.
30.3.2.3. Managing ICMP
Many of the tools used for debugging or troubleshooting
	 a TCP/IP network rely on the Internet
	 Control Message Protocol (ICMP), which
	 was designed specifically with debugging in mind.
The ICMP protocol sends and receives
	 control messages between hosts and
	 gateways, mainly to provide feedback to a sender about any
	 unusual or difficult conditions enroute to the target host.
	 Routers use ICMP to negotiate packet
	 sizes and other transmission parameters in a process often
	 referred to as path MTU
	 discovery.
From a firewall perspective, some
	 ICMP control messages are vulnerable to
	 known attack vectors. Also, letting all diagnostic traffic
	 pass unconditionally makes debugging easier, but it also
	 makes it easier for others to extract information about the
	 network. For these reasons, the following rule may not be
	 optimal:
pass inet proto icmp from any to any
One solution is to let all ICMP
	 traffic from the local network through while stopping all
	 probes from outside the network:
pass inet proto icmp from $localnet to any keep state
pass inet proto icmp from any to $ext_if keep state
Additional options are available which demonstrate some
	 of PF's flexibility. For
	 example, rather than allowing all ICMP
	 messages, one can specify the messages used by ping(8)
	 and traceroute(8). Start by defining a macro for that
	 type of message:
icmp_types = "echoreq"
and a rule which uses the macro:
pass inet proto icmp all icmp-type $icmp_types keep state
If other types of ICMP packets are
	 needed, expand icmp_types to a list of
	 those packet types. Type more
	 /usr/src/sbin/pfctl/pfctl_parser.c to see
	 the list of ICMP message types supported
	 by PF. Refer to http://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
	 for an explanation of each message type.
Since Unix traceroute uses
	 UDP by default, another rule is needed to
	 allow Unix traceroute:
allow out the default range for traceroute(8):
pass out on $ext_if inet proto udp from any to any port 33433 >< 33626 keep state
Since TRACERT.EXE on Microsoft
	 Windows systems uses ICMP echo request
	 messages, only the first rule is needed to allow network
	 traces from those systems. Unix
	 traceroute can be instructed to use other
	 protocols as well, and will use ICMP echo
	 request messages if -I is used. Check the
	 traceroute(8) man page for details.
30.3.2.3.1. Path MTU Discovery
Internet protocols are designed to be device
	 independent, and one consequence of device independence is
	 that the optimal packet size for a given connection cannot
	 always be predicted reliably. The main constraint on
	 packet size is the Maximum Transmission
	 Unit (MTU) which sets the
	 upper limit on the packet size for an interface. Type
	 ifconfig to view the
	 MTUs for a system's network
	 interfaces.
TCP/IP uses a process known as path
	 MTU discovery to determine the right
	 packet size for a connection. This process sends packets
	 of varying sizes with the “Do not fragment”
	 flag set, expecting an ICMP return
	 packet of “type 3, code 4” when the upper
	 limit has been reached. Type 3 means “destination
	 unreachable”, and code 4 is short for
	 “fragmentation needed, but the do-not-fragment flag
	 is set”. To allow path MTU discovery in order
	 to support connections to other MTUs,
	 add the destination unreachable type to
	 the icmp_types macro:
icmp_types = "{ echoreq, unreach }"
Since the pass rule already uses that macro, it does
	 not need to be modified to support the new
	 ICMP type:
pass inet proto icmp all icmp-type $icmp_types keep state
PF allows filtering on all
	 variations of ICMP types and codes.
	 The list of possible types and codes are documented in
	 icmp(4) and icmp6(4).
30.3.2.4. Using Tables
Some types of data are relevant to filtering and
	 redirection at a given time, but their definition is too
	 long to be included in the ruleset file.
	 PF supports the use of tables,
	 which are defined lists that can be manipulated without
	 needing to reload the entire ruleset, and which can provide
	 fast lookups. Table names are always enclosed within
	 < >, like this:
table <clients> { 192.168.2.0/24, !192.168.2.5 }
In this example, the 192.168.2.0/24
	 network is part of the table, except for the address
	 192.168.2.5, which is excluded using the
	 ! operator. It is also possible to load
	 tables from files where each item is on a separate line, as
	 seen in this example
	 /etc/clients:
192.168.2.0/24
!192.168.2.5
To refer to the file, define the table like this:
table <clients> persist file "/etc/clients"
Once the table is defined, it can be referenced by a
	 rule:
pass inet proto tcp from <clients> to any port $client_out flags S/SA keep state
A table's contents can be manipulated live, using
	 pfctl. This example adds another network
	 to the table:
pfctl -t clients -T add 192.168.1.0/16
Note that any changes made this way will take affect
	 now, making them ideal for testing, but will not survive a
	 power failure or reboot. To make the changes permanent,
	 modify the definition of the table in the ruleset or edit
	 the file that the table refers to. One can maintain the
	 on-disk copy of the table using a cron(8) job which
	 dumps the table's contents to disk at regular intervals,
	 using a command such as pfctl -t clients -T show
	 >/etc/clients. Alternatively,
	 /etc/clients can be updated with the
	 in-memory table contents:
pfctl -t clients -T replace -f /etc/clients
30.3.2.5. Using Overload Tables to Protect
	 SSH
Those who run SSH on an external
	 interface have probably seen something like this in the
	 authentication logs:
Sep 26 03:12:34 skapet sshd[25771]: Failed password for root from 200.72.41.31 port 40992 ssh2
Sep 26 03:12:34 skapet sshd[5279]: Failed password for root from 200.72.41.31 port 40992 ssh2
Sep 26 03:12:35 skapet sshd[5279]: Received disconnect from 200.72.41.31: 11: Bye Bye
Sep 26 03:12:44 skapet sshd[29635]: Invalid user admin from 200.72.41.31
Sep 26 03:12:44 skapet sshd[24703]: input_userauth_request: invalid user admin
Sep 26 03:12:44 skapet sshd[24703]: Failed password for invalid user admin from 200.72.41.31 port 41484 ssh2
This is indicative of a brute force attack where
	 somebody or some program is trying to discover the user name
	 and password which will let them into the system.
If external SSH access is needed for
	 legitimate users, changing the default port used by
	 SSH can offer some protection. However,
	 PF provides a more elegant
	 solution. Pass rules can contain limits on what connecting
	 hosts can do and violators can be banished to a table of
	 addresses which are denied some or all access. It is even
	 possible to drop all existing connections from machines
	 which overreach the limits.
To configure this, create this table in the tables
	 section of the ruleset:
table <bruteforce> persist
Then, somewhere early in the ruleset, add rules to block
	 brute access while allowing legitimate access:
block quick from <bruteforce>
pass inet proto tcp from any to $localnet port $tcp_services \
 flags S/SA keep state \
 (max-src-conn 100, max-src-conn-rate 15/5, \
 overload <bruteforce> flush global)
The part in parentheses defines the limits and the
	 numbers should be changed to meet local requirements. It
	 can be read as follows:
max-src-conn is the number of
	 simultaneous connections allowed from one host.
max-src-conn-rate is the rate of new
	 connections allowed from any single host
	 (15) per number of seconds
	 (5).
overload <bruteforce> means
	 that any host which exceeds these limits gets its address
	 added to the bruteforce table. The
	 ruleset blocks all traffic from addresses in the
	 bruteforce table.
Finally, flush global says that when
	 a host reaches the limit, that all
	 (global) of that host's connections will
	 be terminated (flush).
Note:
These rules will not block slow
	 bruteforcers, as described in http://home.nuug.no/~peter/hailmary2013/.

This example ruleset is intended mainly as an
	 illustration. For example, if a generous number of
	 connections in general are wanted, but the desire is to be
	 more restrictive when it comes to
	 ssh, supplement the rule above
	 with something like the one below, early on in the rule
	 set:
pass quick proto { tcp, udp } from any to any port ssh \
 flags S/SA keep state \
 (max-src-conn 15, max-src-conn-rate 5/3, \
 overload <bruteforce> flush global)
It May Not be Necessary to Block All
	 Overloaders:
It is worth noting that the overload mechanism is a
	 general technique which does not apply exclusively to
	 SSH, and it is not always optimal to
	 entirely block all traffic from offenders.
For example, an overload rule could be used to
	 protect a mail service or a web service, and the overload
	 table could be used in a rule to assign offenders to a
	 queue with a minimal bandwidth allocation or to redirect
	 to a specific web page.

Over time, tables will be filled by overload rules and
	 their size will grow incrementally, taking up more memory.
	 Sometimes an IP address that is blocked
	 is a dynamically assigned one, which has since been assigned
	 to a host who has a legitimate reason to communicate with
	 hosts in the local network.
For situations like these,
	 pfctl provides the ability to
	 expire table entries. For example, this command will remove
	 <bruteforce> table entries which
	 have not been referenced for 86400
	 seconds:
pfctl -t bruteforce -T expire 86400
Similar functionality is provided by
	 security/expiretable, which removes table
	 entries which have not been accessed for a specified period
	 of time.
Once installed, expiretable
	 can be run to remove <bruteforce>
	 table entries older than a specified age. This example
	 removes all entries older than 24 hours:
/usr/local/sbin/expiretable -v -d -t 24h bruteforce
30.3.2.6. Protecting Against SPAM
Not to be confused with the
	 spamd daemon which comes bundled
	 with spamassassin,
	 mail/spamd can be configured with
	 PF to provide an outer defense
	 against SPAM. This
	 spamd hooks into the
	 PF configuration using a set of
	 redirections.
Spammers tend to send a large number of messages, and
	 SPAM is mainly sent from a few spammer
	 friendly networks and a large number of hijacked machines,
	 both of which are reported to
	 blacklists fairly quickly.
When an SMTP connection from an
	 address in a blacklist is received,
	 spamd presents its banner and
	 immediately switches to a mode where it answers
	 SMTP traffic one byte at a time. This
	 technique, which is intended to waste as much time as
	 possible on the spammer's end, is called
	 tarpitting. The specific
	 implementation which uses one byte SMTP
	 replies is often referred to as
	 stuttering.
This example demonstrates the basic procedure for
	 setting up spamd with
	 automatically updated blacklists. Refer to the man pages
	 which are installed with mail/spamd for
	 more information.
Procedure 30.1. Configuring spamd
	Install the mail/spamd package
	 or port. To use spamd's
	 greylisting features, fdescfs(5) must be mounted at
	 /dev/fd. Add the following line to
	 /etc/fstab:
 fdescfs /dev/fd fdescfs rw 0 0
Then, mount the filesystem:
mount fdescfs

	Next, edit the PF ruleset
	 to include:
table <spamd> persist
table <spamd-white> persist
rdr pass on $ext_if inet proto tcp from <spamd> to \
 { $ext_if, $localnet } port smtp -> 127.0.0.1 port 8025
rdr pass on $ext_if inet proto tcp from !<spamd-white> to \
 { $ext_if, $localnet } port smtp -> 127.0.0.1 port 8025
The two tables <spamd> and
	 <spamd-white> are essential.
	 SMTP traffic from an address listed
	 in <spamd> but not in
	 <spamd-white> is redirected to
	 the spamd daemon listening at
	 port 8025.

	The next step is to configure
	 spamd in
	 /usr/local/etc/spamd.conf and to
	 add some rc.conf parameters.
The installation of mail/spamd
	 includes a sample configuration file
	 (/usr/local/etc/spamd.conf.sample)
	 and a man page for spamd.conf.
	 Refer to these for additional configuration options
	 beyond those shown in this example.
One of the first lines in the configuration file
	 that does not begin with a # comment
	 sign contains the block which defines the
	 all list, which specifies the lists
	 to use:
all:\
 :traplist:whitelist:
This entry adds the desired blacklists, separated by
	 colons (:). To use a whitelist to
	 subtract addresses from a blacklist, add the name of the
	 whitelist immediately after the
	 name of that blacklist. For example:
	 :blacklist:whitelist:.
This is followed by the specified blacklist's
	 definition:
traplist:\
 :black:\
 :msg="SPAM. Your address %A has sent spam within the last 24 hours":\
 :method=http:\
 :file=www.openbsd.org/spamd/traplist.gz
where the first line is the name of the blacklist
	 and the second line specifies the list type. The
	 msg field contains the message to
	 display to blacklisted senders during the
	 SMTP dialogue. The
	 method field specifies how
	 spamd-setup fetches the list
	 data; supported methods are http,
	 ftp, from a
	 file in a mounted file system, and
	 via exec of an external program.
	 Finally, the file field specifies
	 the name of the file spamd
	 expects to receive.
The definition of the specified whitelist is
	 similar, but omits the msg field
	 since a message is not needed:
whitelist:\
 :white:\
 :method=file:\
 :file=/var/mail/whitelist.txt
Choose Data Sources with Care:
Using all the blacklists in the sample
		spamd.conf will blacklist large
		blocks of the Internet. Administrators need to edit
		the file to create an optimal configuration which uses
		applicable data sources and, when necessary, uses
		custom lists.

Next, add this entry to
	 /etc/rc.conf. Additional flags are
	 described in the man page specified by the
	 comment:
spamd_flags="-v" # use "" and see spamd-setup(8) for flags
When finished, reload the ruleset, start
	 spamd by typing
	 service obspamd start, and complete
	 the configuration using spamd-setup.
	 Finally, create a cron(8) job which calls
	 spamd-setup to update the tables at
	 reasonable intervals.

On a typical gateway in front of a mail server, hosts
	 will soon start getting trapped within a few seconds to
	 several minutes.
PF also supports
	 greylisting, which temporarily
	 rejects messages from unknown hosts with
	 45n codes. Messages from
	 greylisted hosts which try again within a reasonable time
	 are let through. Traffic from senders which are set up to
	 behave within the limits set by RFC 1123 and RFC 2821 are
	 immediately let through.
More information about greylisting as a technique can be
	 found at the greylisting.org
	 web site. The most amazing thing about greylisting, apart
	 from its simplicity, is that it still works. Spammers and
	 malware writers have been very slow to adapt to bypass this
	 technique.
The basic procedure for configuring greylisting is as
	 follows:
Procedure 30.2. Configuring Greylisting
	Make sure that fdescfs(5) is mounted as
	 described in Step 1 of the previous Procedure.

	To run spamd in
	 greylisting mode, add this line to
	 /etc/rc.conf:
spamd_grey="YES" # use spamd greylisting if YES
Refer to the spamd man
	 page for descriptions of additional related
	 parameters.

	To complete the greylisting setup:
service obspamd restart
service obspamlogd start

Behind the scenes, the spamdb
	 database tool and the spamlogd
	 whitelist updater perform essential functions for the
	 greylisting feature. spamdb is
	 the administrator's main interface to managing the black,
	 grey, and white lists via the contents of the
	 /var/db/spamdb database.
30.3.2.7. Network Hygiene
This section describes how
	 block-policy, scrub,
	 and antispoof can be used to make the
	 ruleset behave sanely.
The block-policy is an option which
	 can be set in the options part of the
	 ruleset, which precedes the redirection and filtering rules.
	 This option determines which feedback, if any,
	 PF sends to hosts that are
	 blocked by a rule. The option has two possible values:
	 drop drops blocked packets with no
	 feedback, and return returns a status
	 code such as
	 Connection refused.
If not set, the default policy is
	 drop. To change the
	 block-policy, specify the desired
	 value:
set block-policy return
In PF,
	 scrub is a keyword which enables network
	 packet normalization. This process reassembles fragmented
	 packets and drops TCP packets that have invalid flag
	 combinations. Enabling scrub provides a
	 measure of protection against certain kinds of attacks
	 based on incorrect handling of packet fragments. A number
	 of options are available, but the simplest form is suitable
	 for most configurations:
scrub in all
Some services, such as NFS, require
	 specific fragment handling options. Refer to https://home.nuug.no/~peter/pf/en/scrub.html
	 for more information.
This example reassembles fragments, clears the
	 “do not fragment” bit, and sets the maximum
	 segment size to 1440 bytes:
scrub in all fragment reassemble no-df max-mss 1440
The antispoof mechanism protects
	 against activity from spoofed or forged
	 IP addresses, mainly by blocking packets
	 appearing on interfaces and in directions which are
	 logically not possible.
These rules weed out spoofed traffic coming in from the
	 rest of the world as well as any spoofed packets which
	 originate in the local network:
antispoof for $ext_if
antispoof for $int_if
30.3.2.8. Handling Non-Routable Addresses
Even with a properly configured gateway to handle
	 network address translation, one may have to compensate for
	 other people's misconfigurations. A common misconfiguration
	 is to let traffic with non-routable addresses out to the
	 Internet. Since traffic from non-routeable addresses can
	 play a part in several DoS attack
	 techniques, consider explicitly blocking traffic from
	 non-routeable addresses from entering the network through
	 the external interface.
In this example, a macro containing non-routable
	 addresses is defined, then used in blocking rules. Traffic
	 to and from these addresses is quietly dropped on the
	 gateway's external
	 interface.
martians = "{ 127.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12, \
	 10.0.0.0/8, 169.254.0.0/16, 192.0.2.0/24, \
	 0.0.0.0/8, 240.0.0.0/4 }"

block drop in quick on $ext_if from $martians to any
block drop out quick on $ext_if from any to $martians
30.3.3. Enabling ALTQ
On FreeBSD, ALTQ can be used with
	PF to provide Quality of Service
	(QOS). Once
	ALTQ is enabled, queues can be
	defined in the ruleset which determine the processing priority
	of outbound packets.
Before enabling ALTQ, refer to
	altq(4) to determine if the drivers for the network cards
	installed on the system support it.
ALTQ is not available as a
	loadable kernel module. If the system's interfaces support
	ALTQ, create a custom kernel using
	the instructions in Chapter 8, Configuring the FreeBSD Kernel. The
	following kernel options are available. The first is needed
	to enable ALTQ. At least one of
	the other options is necessary to specify the queueing
	scheduler algorithm:
options ALTQ
options ALTQ_CBQ # Class Based Queuing (CBQ)
options ALTQ_RED # Random Early Detection (RED)
options ALTQ_RIO # RED In/Out
options ALTQ_HFSC # Hierarchical Packet Scheduler (HFSC)
options ALTQ_PRIQ # Priority Queuing (PRIQ)
The following scheduler algorithms are available:
	CBQ
	Class Based Queuing (CBQ) is
	 used to divide a connection's bandwidth into different
	 classes or queues to prioritize traffic based on filter
	 rules.

	RED
	Random Early Detection (RED) is
	 used to avoid network congestion by measuring the length
	 of the queue and comparing it to the minimum and maximum
	 thresholds for the queue. When the queue is over the
	 maximum, all new packets are randomly dropped.

	RIO
	In Random Early Detection In and Out
	 (RIO) mode, RED
	 maintains multiple average queue lengths and multiple
	 threshold values, one for each
	 QOS level.

	HFSC
	Hierarchical Fair Service Curve Packet Scheduler
	 (HFSC) is described in http://www-2.cs.cmu.edu/~hzhang/HFSC/main.html.

	PRIQ
	Priority Queuing (PRIQ) always
	 passes traffic that is in a higher queue first.

More information about the scheduling
	algorithms and example rulesets are available at the OpenBSD's web archive.
27.5. Using PPP over
 ATM (PPPoA)
The following describes how to set up PPP over
 ATM (PPPoA). PPPoA is a popular choice among
 European DSL providers.
27.5.1. Using mpd
The mpd application can be used
	to connect to a variety of services, in particular PPTP
	services. It can be installed using the
	net/mpd5 package or port. Many ADSL modems
	require that a PPTP tunnel is created between the modem and
	computer.
Once installed, configure mpd
	to suit the provider's settings. The port places a set of
	sample configuration files which are well documented in
	/usr/local/etc/mpd/. A complete guide to
	configure mpd is available in HTML
	format in /usr/ports/share/doc/mpd/.
	Here is a sample configuration for connecting to an ADSL
	service with mpd. The
	configuration is spread over two files, first the
	mpd.conf:
Note:
This example mpd.conf only works
	 with mpd 4.x.

default:
 load adsl

adsl:
 new -i ng0 adsl adsl
 set bundle authname username [image: 1]
 set bundle password password [image: 2]
 set bundle disable multilink

 set link no pap acfcomp protocomp
 set link disable chap
 set link accept chap
 set link keep-alive 30 10

 set ipcp no vjcomp
 set ipcp ranges 0.0.0.0/0 0.0.0.0/0

 set iface route default
 set iface disable on-demand
 set iface enable proxy-arp
 set iface idle 0

 open
	[image: 1]
	The username used to authenticate with your
	 ISP.

	[image: 2]
	The password used to authenticate with your
	 ISP.

Information about the link, or links, to establish is found
 in mpd.links. An example
 mpd.links to accompany the above example
 is given beneath:
adsl:
 set link type pptp
 set pptp mode active
 set pptp enable originate outcall
 set pptp self 10.0.0.1 [image: 1]
 set pptp peer 10.0.0.138 [image: 2]
	[image: 1]
	The IP address of FreeBSD computer
	 running mpd.

	[image: 2]
	The IP address of the ADSL modem.
	 The Alcatel SpeedTouch™ Home defaults to 10.0.0.138.

It is possible to initialize the connection easily by
 issuing the following command as
 root:
mpd -b adsl
To view the status of the connection:
% ifconfig ng0
ng0: flags=88d1<UP,POINTOPOINT,RUNNING,NOARP,SIMPLEX,MULTICAST> mtu 1500
 inet 216.136.204.117 --> 204.152.186.171 netmask 0xffffffff
Using mpd is the recommended
 way to connect to an ADSL service with FreeBSD.
27.5.2. Using pptpclient
It is also possible to use FreeBSD to connect to other
 PPPoA services using net/pptpclient.
To use net/pptpclient
 to connect to a DSL service, install the port or package, then
 edit /etc/ppp/ppp.conf. An example section
 of ppp.conf is given below. For further
 information on ppp.conf options consult
 ppp(8).
adsl:
 set log phase chat lcp ipcp ccp tun command
 set timeout 0
 enable dns
 set authname username [image: 1]
 set authkey password [image: 2]
 set ifaddr 0 0
 add default HISADDR
	[image: 1]
	The username for the DSL provider.

	[image: 2]
	The password for your account.

Warning:
Since the account's password is added to
	ppp.confin plain text form, make sure
	nobody can read the contents of this file:
chown root:wheel /etc/ppp/ppp.conf
chmod 600 /etc/ppp/ppp.conf

This will open a tunnel for a PPP
	session to the DSL router. Ethernet DSL modems have a
	preconfigured LAN IP address to connect to.
	In the case of the Alcatel SpeedTouch™ Home, this address is
	10.0.0.138. The
	router's documentation should list the address the device
	uses. To open the tunnel and start a PPP
	session:
pptp address adsl
Tip:
If an ampersand (“&”) is added
	 to the end of this command,
	 pptp will return the
	 prompt.

A tun virtual tunnel device
	will be created for interaction between the
	pptp and
	ppp processes. Once the
	prompt is returned, or the
	pptp process has confirmed a
	connection, examine the tunnel:
% ifconfig tun0
tun0: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> mtu 1500
 inet 216.136.204.21 --> 204.152.186.171 netmask 0xffffff00
	Opened by PID 918
If the connection fails, check the configuration of
	the router, which is usually accessible using
	a web browser. Also, examine the output of
	pptp and the contents of the
	log file,
	/var/log/ppp.log for clues.
5.6. The X Display Manager
Originally contributed by Seth Kingsley. Xorg provides an X Display
 Manager, XDM, which can be used for
 login session management. XDM
 provides a graphical interface for choosing which display server
 to connect to and for entering authorization information such as
 a login and password combination.
This section demonstrates how to configure the X Display
 Manager on FreeBSD. Some desktop environments provide their own
 graphical login manager. Refer to Section 5.7.1, “GNOME” for instructions on how to configure
 the GNOME Display Manager and Section 5.7.2, “KDE” for
 instructions on how to configure the KDE Display Manager.
5.6.1. Configuring XDM
To install XDM, use the
	x11/xdm package or port. Once installed,
	XDM can be configured to run when
	the machine boots up by editing this entry in
	/etc/ttys:
ttyv8 "/usr/local/bin/xdm -nodaemon" xterm off secure
Change the off to on
	and save the edit. The ttyv8 in this entry
	indicates that XDM will run on the
	ninth virtual terminal.
The XDM configuration directory
	is located in /usr/local/etc/X11/xdm.
	This directory contains several files used to change the
	behavior and appearance of XDM, as
	well as a few scripts and programs used to set up the desktop
	when XDM is running. Table 5.1, “XDM Configuration Files” summarizes the function of each
	of these files. The exact syntax and usage of these files is
	described in xdm(1).
Table 5.1. XDM Configuration Files
	File	Description
	Xaccess	The protocol for connecting to
		XDM is called the X Display
		Manager Connection Protocol (XDMCP).
		This file is a client authorization ruleset for
		controlling XDMCP connections from
		remote machines. By default, this file does not allow
		any remote clients to connect.
	Xresources	This file controls the look and feel of the
		XDM display chooser and
		login screens. The default configuration is a simple
		rectangular login window with the hostname of the
		machine displayed at the top in a large font and
		“Login:” and “Password:”
		prompts below. The format of this file is identical
		to the app-defaults file described in the
		Xorg
		documentation.
	Xservers	The list of local and remote displays the chooser
		should provide as login choices.
	Xsession	Default session script for logins which is run by
		XDM after a user has logged
		in. This points to a customized session
		script in ~/.xsession.
	Xsetup_*	Script to automatically launch applications
		before displaying the chooser or login interfaces.
		There is a script for each display being used, named
		Xsetup_*, where
		* is the local display number.
		Typically these scripts run one or two programs in the
		background such as
		xconsole.
	xdm-config	Global configuration for all displays running
		on this machine.
	xdm-errors	Contains errors generated by the server program.
		If a display that XDM is
		trying to start hangs, look at this file for error
		messages. These messages are also written to the
		user's ~/.xsession-errors on a
		per-session basis.
	xdm-pid	The running process ID of
		XDM.

5.6.2. Configuring Remote Access
By default, only users on the same system can login using
	XDM. To enable users on other
	systems to connect to the display server, edit the access
	control rules and enable the connection listener.
To configure XDM to listen for
	any remote connection, comment out the
	DisplayManager.requestPort line in
	/usr/local/etc/X11/xdm/xdm-config by
	putting a ! in front of it:
! SECURITY: do not listen for XDMCP or Chooser requests
! Comment out this line if you want to manage X terminals with xdm
DisplayManager.requestPort: 0
Save the edits and restart XDM.
	To restrict remote access, look at the example entries in
	/usr/local/etc/X11/xdm/Xaccess and refer
	to xdm(1) for further information.
28.4. Changing the Mail Transfer Agent
Written by Andrew Boothman. Information taken from emails written by Gregory Neil Shapiro. FreeBSD comes with Sendmail already
 installed as the MTA which is in charge of
 outgoing and incoming mail. However, the system administrator
 can change the system's MTA. A wide choice
 of alternative MTAs is available from the
 mail category of the FreeBSD Ports
 Collection.
Once a new MTA is installed, configure
 and test the new software before replacing
 Sendmail. Refer to the documentation
 of the new MTA for information on how to
 configure the software.
Once the new MTA is working, use the
 instructions in this section to disable
 Sendmail and configure FreeBSD to use
 the replacement MTA.
28.4.1. Disable Sendmail
Warning:
If Sendmail's outgoing mail
	 service is disabled, it is important that it is replaced
	 with an alternative mail delivery system. Otherwise, system
	 functions such as periodic(8) will be unable to deliver
	 their results by email. Many parts of the system expect a
	 functional MTA. If applications continue
	 to use Sendmail's binaries to try
	 to send email after they are disabled, mail could go into an
	 inactive Sendmail queue and
	 never be delivered.

In order to completely disable
	Sendmail, add or edit the following
	lines in /etc/rc.conf:
sendmail_enable="NO"
sendmail_submit_enable="NO"
sendmail_outbound_enable="NO"
sendmail_msp_queue_enable="NO"
To only disable Sendmail's
	incoming mail service, use only this entry in
	/etc/rc.conf:
sendmail_enable="NO"
More information on Sendmail's
	startup options is available in rc.sendmail(8).
28.4.2. Replace the Default MTA
When a new MTA is installed using the
	Ports Collection, its startup script is also installed and
	startup instructions are mentioned in its package message.
	Before starting the new MTA, stop the
	running Sendmail processes. This
	example stops all of these services, then starts the
	Postfix service:
service sendmail stop
service postfix start
To start the replacement MTA at system
	boot, add its configuration line to
	/etc/rc.conf. This entry enables the
	Postfix MTA:
postfix_enable="YES"
Some extra configuration is needed as
	Sendmail is so ubiquitous that some
	software assumes it is already installed and configured.
	Check /etc/periodic.conf and make sure
	that these values are set to NO. If this
	file does not exist, create it with these entries:
daily_clean_hoststat_enable="NO"
daily_status_mail_rejects_enable="NO"
daily_status_include_submit_mailq="NO"
daily_submit_queuerun="NO"
Some alternative MTAs provide their own
	compatible implementations of the
	Sendmail command-line interface in
	order to facilitate using them as drop-in replacements for
	Sendmail. However, some
	MUAs may try to execute standard
	Sendmail binaries instead of the
	new MTA's binaries. FreeBSD uses
	/etc/mail/mailer.conf to map the expected
	Sendmail binaries to the location
	of the new binaries. More information about this mapping can
	be found in mailwrapper(8).
The default /etc/mail/mailer.conf
	looks like this:
$FreeBSD$
#
Execute the "real" sendmail program, named /usr/libexec/sendmail/sendmail
#
sendmail /usr/libexec/sendmail/sendmail
send-mail /usr/libexec/sendmail/sendmail
mailq /usr/libexec/sendmail/sendmail
newaliases /usr/libexec/sendmail/sendmail
hoststat /usr/libexec/sendmail/sendmail
purgestat /usr/libexec/sendmail/sendmail
When any of the commands listed on the left are run, the
	system actually executes the associated command shown on the
	right. This system makes it easy to change what binaries are
	executed when these default binaries are invoked.
Some MTAs, when installed using the
	Ports Collection, will prompt to update this file for the new
	binaries. For example, Postfix
	will update the file like this:
#
Execute the Postfix sendmail program, named /usr/local/sbin/sendmail
#
sendmail /usr/local/sbin/sendmail
send-mail /usr/local/sbin/sendmail
mailq /usr/local/sbin/sendmail
newaliases /usr/local/sbin/sendmail
If the installation of the MTA does
	not automatically update
	/etc/mail/mailer.conf, edit this file in
	a text editor so that it points to the new binaries. This
	example points to the binaries installed by
	mail/ssmtp:
sendmail /usr/local/sbin/ssmtp
send-mail /usr/local/sbin/ssmtp
mailq /usr/local/sbin/ssmtp
newaliases /usr/local/sbin/ssmtp
hoststat /usr/bin/true
purgestat /usr/bin/true
Once everything is configured, it is recommended to reboot
	the system. Rebooting provides the opportunity to ensure that
	the system is correctly configured to start the new
	MTA automatically on boot.
11.6. Virtual Hosts
A common use of FreeBSD is virtual site hosting, where one
 server appears to the network as many servers. This is achieved
 by assigning multiple network addresses to a single
 interface.
A given network interface has one “real”
 address, and may have any number of “alias”
 addresses. These aliases are normally added by placing alias
 entries in /etc/rc.conf, as seen in this
 example:
ifconfig_fxp0_alias0="inet xxx.xxx.xxx.xxx netmask xxx.xxx.xxx.xxx"
Alias entries must start with
 alias0 using a
 sequential number such as
 alias0, alias1,
 and so on. The configuration process will stop at the first
 missing number.
The calculation of alias netmasks is important. For a
 given interface, there must be one address which correctly
 represents the network's netmask. Any other addresses which
 fall within this network must have a netmask of all
 1s, expressed as either
 255.255.255.255 or
 0xffffffff.
For example, consider the case where the
 fxp0 interface is connected to two
 networks: 10.1.1.0
 with a netmask of
 255.255.255.0 and
 202.0.75.16 with a
 netmask of
 255.255.255.240. The
 system is to be configured to appear in the ranges
 10.1.1.1 through
 10.1.1.5 and
 202.0.75.17 through
 202.0.75.20. Only
 the first address in a given network range should have a real
 netmask. All the rest
 (10.1.1.2 through
 10.1.1.5 and
 202.0.75.18 through
 202.0.75.20) must be
 configured with a netmask of
 255.255.255.255.
The following /etc/rc.conf entries
 configure the adapter correctly for this scenario:
ifconfig_fxp0="inet 10.1.1.1 netmask 255.255.255.0"
ifconfig_fxp0_alias0="inet 10.1.1.2 netmask 255.255.255.255"
ifconfig_fxp0_alias1="inet 10.1.1.3 netmask 255.255.255.255"
ifconfig_fxp0_alias2="inet 10.1.1.4 netmask 255.255.255.255"
ifconfig_fxp0_alias3="inet 10.1.1.5 netmask 255.255.255.255"
ifconfig_fxp0_alias4="inet 202.0.75.17 netmask 255.255.255.240"
ifconfig_fxp0_alias5="inet 202.0.75.18 netmask 255.255.255.255"
ifconfig_fxp0_alias6="inet 202.0.75.19 netmask 255.255.255.255"
ifconfig_fxp0_alias7="inet 202.0.75.20 netmask 255.255.255.255"
A simpler way to express this is with a space-separated list
 of IP address ranges. The first address
 will be given the
 indicated subnet mask and the additional addresses will have a
 subnet mask of 255.255.255.255.
ifconfig_fxp0_aliases="inet 10.1.1.1-5/24 inet 202.0.75.17-20/28"
2.8. Accounts, Time Zone, Services and Hardening
2.8.1. Setting the
	root
	Password
First, the root
	password must be set. While entering the password, the
	characters being typed are not displayed on the screen. After
	the password has been entered, it must be entered again. This
	helps prevent typing errors.
[image: Setting the root Password]

Figure 2.34. Setting the root Password

2.8.2. Setting the Time Zone
The next series of menus are used to determine the correct
	local time by selecting the geographic region, country, and
	time zone. Setting the time zone allows the system to
	automatically correct for regional time changes, such as
	daylight savings time, and perform other time zone related
	functions properly.
The example shown here is for a machine located in the
	mainland time zone of Spain, Europe. The selections will
	vary according to the geographical location.
[image: Select a Region]

Figure 2.35. Select a Region

The appropriate region is selected using the arrow keys
	and then pressing Enter.
[image: Select a Country]

Figure 2.36. Select a Country

Select the appropriate country using the arrow keys and
	press Enter.
[image: Select a Time Zone]

Figure 2.37. Select a Time Zone

The appropriate time zone is selected using the arrow keys
	and pressing Enter.
[image: Confirm Time Zone]

Figure 2.38. Confirm Time Zone

Confirm the abbreviation for the time zone is
	correct.
[image: Select Date]

Figure 2.39. Select Date

The appropriate date is selected using the arrow keys
	and then pressing
	[Set Date].
	Otherwise, the date selection can be skipped by pressing
	[Skip].
[image: Select Time]

Figure 2.40. Select Time

The appropriate time is selected using the arrow keys
	and then pressing
	[Set Time].
	Otherwise, the time selection can be skipped by pressing
	[Skip].
2.8.3. Enabling Services
The next menu is used to configure which system services
	will be started whenever the system boots. All of these
	services are optional. Only start the services that are
	needed for the system to function.
[image: Selecting Additional Services to Enable]

Figure 2.41. Selecting Additional Services to Enable

Here is a summary of the services which can be enabled in
	this menu:
	local_unbound - Enable the DNS
	 local unbound. It is necessary to keep in mind that this
	 is the unbound of the base system and is only meant for
	 use as a local caching forwarding resolver. If the
	 objective is to set up a resolver for the entire network
	 install dns/unbound.

	sshd - The Secure Shell
	 (SSH) daemon is used to remotely access
	 a system over an encrypted connection. Only enable this
	 service if the system should be available for remote
	 logins.

	moused - Enable this service if the
	 mouse will be used from the command-line system
	 console.

	ntpdate - Enable the automatic
	 clock synchronization at boot time. The functionality of
	 this program is now available in the ntpd(8) daemon.
	 After a suitable period of mourning, the ntpdate(8)
	 utility will be retired.

	ntpd - The Network Time Protocol
	 (NTP) daemon for automatic clock
	 synchronization. Enable this service if there is a
	 Windows®, Kerberos, or LDAP server on
	 the network.

	powerd - System power control
	 utility for power control and energy saving.

	dumpdev - Enabling crash dumps is
	 useful in debugging issues with the system, so users are
	 encouraged to enable crash dumps.

2.8.4. Enabling Hardening Security Options
The next menu is used to configure which security
	options will be enabled. All of these options are optional.
	But their use is encouraged.
[image: Selecting Hardening Security Options]

Figure 2.42. Selecting Hardening Security Options

Here is a summary of the options which can be enabled in
	this menu:
	hide_uids - Hide processes running
	 as other users to prevent the unprivileged users to see
	 other running processes in execution by other users (UID)
	 preventing information leakage.

	hide_gids - Hide processes running
	 as other groups to prevent the unprivileged users to see
	 other running processes in execution by other groups (GID)
	 preventing information leakage.

	hide_jail - Hide processes running
	 in jails to prevent the unprivileged users to see
	 processes running inside the jails.

	read_msgbuf - Disabling reading
	 kernel message buffer for unprivileged users prevent from
	 using dmesg(8) to view messages from the kernel's log
	 buffer.

	proc_debug - Disabling process
	 debugging facilities for unprivileged users disables
	 a variety of unprivileged inter-process debugging
	 services, including some procfs functionality, ptrace(),
	 and ktrace(). Please note that this will also prevent
	 debugging tools, for instance lldb(1), truss(1),
	 procstat(1), as well as some built-in debugging
	 facilities in certain scripting language like PHP, etc.,
	 from working for unprivileged users.

	random_pid - Randomize the PID of
	 newly created processes.

	clear_tmp - Clean
	 /tmp when the system starts
	 up.

	disable_syslogd - Disable opening
	 syslogd network socket. By
	 default FreeBSD runs syslogd in a
	 secure way with -s. That prevents the
	 daemon from listening for incoming UDP requests
	 at port 514. With this option enabled
	 syslogd will run with the flag
	 -ss which prevents
	 syslogd from opening any port.
	 To get more information consult syslogd(8).

	disable_sendmail - Disable the
	 sendmail mail transport agent.

	secure_console - When this option
	 is enabled, the prompt requests the root password when
	 entering single-user mode.

	disable_ddtrace - DTrace can run
	 in a mode that will actually affect the running kernel.
	 Destructive actions may not be used unless they have
	 been explicitly enabled. To enable this option when using
	 DTrace use -w. To get more
	 information consult dtrace(1).

2.8.5. Add Users
The next menu prompts to create at least one user account.
	It is recommended to login to the system using a user account
	rather than as root.
	When logged in as root, there are essentially no
	limits or protection on what can be done. Logging in as a
	normal user is safer and more secure.
Select [Yes] to add new
	users.
[image: Add User Accounts]

Figure 2.43. Add User Accounts

Follow the prompts and input the requested information for
	the user account. The example shown in Figure 2.44, “Enter User Information” creates the asample user account.
[image: Enter User Information]

Figure 2.44. Enter User Information

Here is a summary of the information to input:
	Username - The name the user will
	 enter to log in. A common convention is to use the first
	 letter of the first name combined with the last name, as
	 long as each username is unique for the system. The
	 username is case sensitive and should not contain any
	 spaces.

	Full name - The user's full name.
	 This can contain spaces and is used as a description for
	 the user account.

	Uid - User ID.
	 Typically, this is left blank so the system will assign a
	 value.

	Login group - The user's group.
	 Typically this is left blank to accept the default.

	Invite user into
	 other groups? - Additional groups to which the
	 user will be added as a member. If the user needs
	 administrative access, type wheel
	 here.

	Login class - Typically left blank
	 for the default.

	Shell - Type in one of the listed
	 values to set the interactive shell for the user. Refer
	 to Section 3.9, “Shells” for more information about
	 shells.

	Home directory - The user's home
	 directory. The default is usually correct.

	Home directory permissions -
	 Permissions on the user's home directory. The default is
	 usually correct.

	Use password-based authentication?
	 - Typically yes so that the user is
	 prompted to input their password at login.

	Use an empty password? -
	 Typically no as it is insecure to have
	 a blank password.

	Use a random password? - Typically
	 no so that the user can set their own
	 password in the next prompt.

	Enter password - The password for
	 this user. Characters typed will not show on the
	 screen.

	Enter password again - The password
	 must be typed again for verification.

	Lock out the account after
	 creation? - Typically no so
	 that the user can login.

After entering everything, a summary is shown for review.
	If a mistake was made, enter no and try
	again. If everything is correct, enter yes
	to create the new user.
[image: Exit User and Group Management]

Figure 2.45. Exit User and Group Management

If there are more users to add, answer the Add
	 another user? question with
	yes. Enter no to finish
	adding users and continue the installation.
For more information on adding users and user management,
	see Section 3.3, “Users and Basic Account Management”.
2.8.6. Final Configuration
After everything has been installed and configured, a
	final chance is provided to modify settings.
[image: Final Configuration]

Figure 2.46. Final Configuration

Use this menu to make any changes or do any additional
	configuration before completing the installation.
	Add User - Described in Section 2.8.5, “Add Users”.

	Root Password - Described in Section 2.8.1, “Setting the
	root
	Password”.

	Hostname - Described in Section 2.5.2, “Setting the Hostname”.

	Network - Described in Section 2.9.1, “Configuring Network Interfaces”.

	Services - Described in Section 2.8.3, “Enabling Services”.

	System Hardening - Described in
	 Section 2.8.4, “Enabling Hardening Security Options”.

	Time Zone - Described in Section 2.8.2, “Setting the Time Zone”.

	Handbook - Download and install the
	 FreeBSD Handbook.

After any final configuration is complete, select
	Exit.
[image: Manual Configuration]

Figure 2.47. Manual Configuration

bsdinstall will prompt if there
	are any additional configuration that needs to be done before
	rebooting into the new system. Select
	[Yes] to exit to a shell
	within the new system or
	[No] to proceed to the last
	step of the installation.
[image: Complete the Installation]

Figure 2.48. Complete the Installation

If further configuration or special setup is needed,
	select [Live CD] to
	boot the install media into Live CD
	mode.
If the installation is complete, select
	[Reboot] to reboot the
	computer and start the new FreeBSD system. Do not forget to
	remove the FreeBSD install media or the computer may boot from it
	again.
As FreeBSD boots, informational messages are displayed.
	After the system finishes booting, a login prompt is
	displayed. At the login: prompt, enter the
	username added during the installation. Avoid logging in as
	root. Refer to
	Section 3.3.1.3, “The Superuser Account” for instructions on how to
	become the superuser when administrative access is
	needed.
The messages that appeared during boot can be reviewed by
	pressing Scroll-Lock to turn on the
	scroll-back buffer. The PgUp,
	PgDn, and arrow keys can be used to scroll
	back through the messages. When finished, press
	Scroll-Lock again to unlock the display and
	return to the console. To review these messages once the
	system has been up for some time, type less
	 /var/run/dmesg.boot from a command prompt. Press
	q to return to the command line after
	viewing.
If sshd was enabled in Figure 2.41, “Selecting Additional Services to Enable”, the first boot may be
	a bit slower as the system will generate the
	RSA and DSA keys.
	Subsequent boots will be faster. The fingerprints of the keys
	will be displayed, as seen in this example:
Generating public/private rsa1 key pair.
Your identification has been saved in /etc/ssh/ssh_host_key.
Your public key has been saved in /etc/ssh/ssh_host_key.pub.
The key fingerprint is:
10:a0:f5:af:93:ae:a3:1a:b2:bb:3c:35:d9:5a:b3:f3 root@machine3.example.com
The key's randomart image is:
+--[RSA1 1024]----+
| o.. |
| o . . |
| . o |
| o |
| o S |
| + + o |
|o . + * |
|o+ ..+ . |
|==o..o+E |
+-----------------+
Generating public/private dsa key pair.
Your identification has been saved in /etc/ssh/ssh_host_dsa_key.
Your public key has been saved in /etc/ssh/ssh_host_dsa_key.pub.
The key fingerprint is:
7e:1c:ce:dc:8a:3a:18:13:5b:34:b5:cf:d9:d1:47:b2 root@machine3.example.com
The key's randomart image is:
+--[DSA 1024]----+
| |
| o . . + |
| E .|
| . . o o . . |
| + S = . |
| + . = o |
| + . * . |
| . . o . |
| .o. . |
+-----------------+
Starting sshd.
Refer to Section 13.8, “OpenSSH” for more information
	about fingerprints and SSH.
FreeBSD does not install a graphical environment by default.
	Refer to Chapter 5, The X Window System for more information about
	installing and configuring a graphical window manager.
Proper shutdown of a FreeBSD computer helps protect data and
	hardware from damage. Do not turn off the power
	before the system has been properly shut down! If
	the user is a member of the wheel group, become the
	superuser by typing su at the command line
	and entering the root password. Then, type
	shutdown -p now and the system will shut
	down cleanly, and if the hardware supports it, turn itself
	off.
11.11. Tuning Kernel Limits
11.11.1. File/Process Limits
11.11.1.1. kern.maxfiles
The kern.maxfiles sysctl(8)
	 variable can be raised or lowered based upon system
	 requirements. This variable indicates the maximum number
	 of file descriptors on the system. When the file descriptor
	 table is full, file: table is full
	 will show up repeatedly in the system message buffer, which
	 can be viewed using dmesg(8).
Each open file, socket, or fifo uses one file
	 descriptor. A large-scale production server may easily
	 require many thousands of file descriptors, depending on the
	 kind and number of services running concurrently.
In older FreeBSD releases, the default value of
	 kern.maxfiles is derived from
	 maxusers in the kernel configuration file.
	 kern.maxfiles grows proportionally to the
	 value of maxusers. When compiling a custom
	 kernel, consider setting this kernel configuration option
	 according to the use of the system. From this number, the
	 kernel is given most of its pre-defined limits. Even though
	 a production machine may not have 256 concurrent users, the
	 resources needed may be similar to a high-scale web
	 server.
The read-only sysctl(8) variable
	 kern.maxusers is automatically sized at
	 boot based on the amount of memory available in the system,
	 and may be determined at run-time by inspecting the value
	 of kern.maxusers. Some systems require
	 larger or smaller values of
	 kern.maxusers and values of
	 64, 128, and
	 256 are not uncommon. Going above
	 256 is not recommended unless a huge
	 number of file descriptors is needed. Many of the tunable
	 values set to their defaults by
	 kern.maxusers may be individually
	 overridden at boot-time or run-time in
	 /boot/loader.conf. Refer to
	 loader.conf(5) and
	 /boot/defaults/loader.conf for more
	 details and some hints.
In older releases, the system will auto-tune
	 maxusers if it is set to
	 0.
	 [2]. When
	 setting this option, set maxusers to
	 at least 4, especially if the system
	 runs Xorg or is used to
	 compile software. The most important table set by
	 maxusers is the maximum number of
	 processes, which is set to
	 20 + 16 * maxusers. If
	 maxusers is set to 1,
	 there can only be
	 36 simultaneous processes, including
	 the 18 or so that the system starts up
	 at boot time and the 15 or so used by
	 Xorg. Even a simple task like
	 reading a manual page will start up nine processes to
	 filter, decompress, and view it. Setting
	 maxusers to 64 allows
	 up to 1044 simultaneous processes, which
	 should be enough for nearly all uses. If, however, the
	 proc table full error is displayed
	 when trying to start another program, or a server is
	 running with a large number of simultaneous users, increase
	 the number and rebuild.
Note:
maxusers does
	 not limit the number of users which
	 can log into the machine. It instead sets various table
	 sizes to reasonable values considering the maximum number
	 of users on the system and how many processes each user
	 will be running.

11.11.1.2. kern.ipc.soacceptqueue
The kern.ipc.soacceptqueue
	 sysctl(8) variable limits the size of the listen queue
	 for accepting new TCP connections. The
	 default value of 128 is typically too low
	 for robust handling of new connections on a heavily loaded
	 web server. For such environments, it is recommended to
	 increase this value to 1024 or higher. A
	 service such as sendmail(8), or
	 Apache may itself limit the
	 listen queue size, but will often have a directive in its
	 configuration file to adjust the queue size. Large listen
	 queues do a better job of avoiding Denial of Service
	 (DoS) attacks.
11.11.2. Network Limits
The NMBCLUSTERS kernel configuration
	option dictates the amount of network Mbufs available to the
	system. A heavily-trafficked server with a low number of
	Mbufs will hinder performance. Each cluster represents
	approximately 2 K of memory, so a value of
	1024 represents 2
	megabytes of kernel memory reserved for network buffers. A
	simple calculation can be done to figure out how many are
	needed. A web server which maxes out at
	1000 simultaneous connections where each
	connection uses a 6 K receive and 16 K send buffer,
	requires approximately 32 MB worth of network buffers
	to cover the web server. A good rule of thumb is to multiply
	by 2, so
	2x32 MB / 2 KB =
	64 MB / 2 kB =
	32768. Values between
	4096 and 32768 are
	recommended for machines with greater amounts of memory.
	Never specify an arbitrarily high value for this parameter
	as it could lead to a boot time crash. To observe network
	cluster usage, use -m with
	netstat(1).
The kern.ipc.nmbclusters loader tunable
	should be used to tune this at boot time. Only older versions
	of FreeBSD will require the use of the
	NMBCLUSTERS kernel config(8)
	option.
For busy servers that make extensive use of the
	sendfile(2) system call, it may be necessary to increase
	the number of sendfile(2) buffers via the
	NSFBUFS kernel configuration option or by
	setting its value in /boot/loader.conf
	(see loader(8) for details). A common indicator that
	this parameter needs to be adjusted is when processes are seen
	in the sfbufa state. The sysctl(8)
	variable kern.ipc.nsfbufs is read-only.
	This parameter nominally scales with
	kern.maxusers, however it may be necessary
	to tune accordingly.
Important:
Even though a socket has been marked as non-blocking,
	 calling sendfile(2) on the non-blocking socket may
	 result in the sendfile(2) call blocking until enough
	 struct sf_buf's are made
	 available.

11.11.2.1. net.inet.ip.portrange.*
The net.inet.ip.portrange.*
	 sysctl(8) variables control the port number ranges
	 automatically bound to TCP and
	 UDP sockets. There are three ranges: a
	 low range, a default range, and a high range. Most network
	 programs use the default range which is controlled by
	 net.inet.ip.portrange.first and
	 net.inet.ip.portrange.last, which default
	 to 1024 and 5000,
	 respectively. Bound port ranges are used for outgoing
	 connections and it is possible to run the system out of
	 ports under certain circumstances. This most commonly
	 occurs when running a heavily loaded web proxy. The port
	 range is not an issue when running a server which handles
	 mainly incoming connections, such as a web server, or has
	 a limited number of outgoing connections, such as a mail
	 relay. For situations where there is a shortage of ports,
	 it is recommended to increase
	 net.inet.ip.portrange.last modestly. A
	 value of 10000, 20000
	 or 30000 may be reasonable. Consider
	 firewall effects when changing the port range. Some
	 firewalls may block large ranges of ports, usually
	 low-numbered ports, and expect systems to use higher ranges
	 of ports for outgoing connections. For this reason, it
	 is not recommended that the value of
	 net.inet.ip.portrange.first be
	 lowered.
11.11.2.2. TCP Bandwidth Delay Product
TCP bandwidth delay product limiting
	 can be enabled by setting the
	 net.inet.tcp.inflight.enable
	 sysctl(8) variable to 1. This
	 instructs the system to attempt to calculate the bandwidth
	 delay product for each connection and limit the amount of
	 data queued to the network to just the amount required to
	 maintain optimum throughput.
This feature is useful when serving data over modems,
	 Gigabit Ethernet, high speed WAN links,
	 or any other link with a high bandwidth delay product,
	 especially when also using window scaling or when a large
	 send window has been configured. When enabling this option,
	 also set net.inet.tcp.inflight.debug to
	 0 to disable debugging. For production
	 use, setting net.inet.tcp.inflight.min
	 to at least 6144 may be beneficial.
	 Setting high minimums may effectively disable bandwidth
	 limiting, depending on the link. The limiting feature
	 reduces the amount of data built up in intermediate route
	 and switch packet queues and reduces the amount of data
	 built up in the local host's interface queue. With fewer
	 queued packets, interactive connections, especially over
	 slow modems, will operate with lower
	 Round Trip Times. This feature only
	 effects server side data transmission such as uploading.
	 It has no effect on data reception or downloading.
Adjusting net.inet.tcp.inflight.stab
	 is not recommended. This parameter
	 defaults to 20, representing 2 maximal
	 packets added to the bandwidth delay product window
	 calculation. The additional window is required to stabilize
	 the algorithm and improve responsiveness to changing
	 conditions, but it can also result in higher ping(8)
	 times over slow links, though still much lower than without
	 the inflight algorithm. In such cases, try reducing this
	 parameter to 15, 10,
	 or 5 and reducing
	 net.inet.tcp.inflight.min to a value such
	 as 3500 to get the desired effect.
	 Reducing these parameters should be done as a last resort
	 only.
11.11.3. Virtual Memory
11.11.3.1. kern.maxvnodes
A vnode is the internal representation of a file or
	 directory. Increasing the number of vnodes available to
	 the operating system reduces disk I/O. Normally, this is
	 handled by the operating system and does not need to be
	 changed. In some cases where disk I/O is a bottleneck and
	 the system is running out of vnodes, this setting needs
	 to be increased. The amount of inactive and free
	 RAM will need to be taken into
	 account.
To see the current number of vnodes in use:
sysctl vfs.numvnodes
vfs.numvnodes: 91349
To see the maximum vnodes:
sysctl kern.maxvnodes
kern.maxvnodes: 100000
If the current vnode usage is near the maximum, try
	 increasing kern.maxvnodes by a value of
	 1000. Keep an eye on the number of
	 vfs.numvnodes. If it climbs up to the
	 maximum again, kern.maxvnodes will need
	 to be increased further. Otherwise, a shift in memory
	 usage as reported by top(1) should be visible and
	 more memory should be active.

[2] The auto-tuning algorithm sets
	 maxusers equal to the amount of
	 memory in the system, with a minimum of
	 32, and a maximum of
	 384.

Chapter 3. FreeBSD Basics
3.1. Synopsis
This chapter covers the basic commands and functionality of
 the FreeBSD operating system. Much of this material is relevant
 for any UNIX®-like operating system. New FreeBSD users are
 encouraged to read through this chapter carefully.
After reading this chapter, you will know:
	How to use and configure virtual consoles.

	How to create and manage users and groups on
	 FreeBSD.

	How UNIX® file permissions and FreeBSD file flags
	 work.

	The default FreeBSD file system layout.

	The FreeBSD disk organization.

	How to mount and unmount file systems.

	What processes, daemons, and signals are.

	What a shell is, and how to change the default login
	 environment.

	How to use basic text editors.

	What devices and device nodes are.

	How to read manual pages for more information.

31.2. Gateways and Routes
Contributed by Coranth Gryphon. Routing is the mechanism that allows
 a system to find the network path to another system. A
 route is a defined pair of addresses
 which represent the “destination” and a
 “gateway”. The route indicates that when trying
 to get to the specified destination, send the packets through
 the specified gateway. There are three types of destinations:
 individual hosts, subnets, and “default”. The
 “default route” is used if no other routes apply.
 There are also three types of gateways: individual hosts,
 interfaces, also called links, and Ethernet hardware
 (MAC) addresses. Known routes are stored in
 a routing table.
This section provides an overview of routing basics. It
 then demonstrates how to configure a FreeBSD system as a router and
 offers some troubleshooting tips.
31.2.1. Routing Basics
To view the routing table of a FreeBSD system, use
	netstat(1):
% netstat -r
Routing tables

Internet:
Destination Gateway Flags Refs Use Netif Expire
default outside-gw UGS 37 418 em0
localhost localhost UH 0 181 lo0
test0 0:e0:b5:36:cf:4f UHLW 5 63288 re0 77
10.20.30.255 link#1 UHLW 1 2421
example.com link#1 UC 0 0
host1 0:e0:a8:37:8:1e UHLW 3 4601 lo0
host2 0:e0:a8:37:8:1e UHLW 0 5 lo0 =>
host2.example.com link#1 UC 0 0
224 link#1 UC 0 0
The entries in this example are as follows:
	default
	The first route in this table specifies the
	 default route. When the local system
	 needs to make a connection to a remote host, it checks
	 the routing table to determine if a known path exists.
	 If the remote host matches an entry in the table, the
	 system checks to see if it can connect using the
	 interface specified in that entry.
If the destination does not match an entry, or if
	 all known paths fail, the system uses the entry for the
	 default route. For hosts on a local area network, the
	 Gateway field in the default route is
	 set to the system which has a direct connection to the
	 Internet. When reading this entry, verify that the
	 Flags column indicates that the
	 gateway is usable (UG).
The default route for a machine which itself is
	 functioning as the gateway to the outside world will be
	 the gateway machine at the Internet Service Provider
	 (ISP).

	localhost
	The second route is the localhost
	 route. The interface specified in the
	 Netif column for
	 localhost is
	 lo0, also known as the loopback
	 device. This indicates that all traffic for this
	 destination should be internal, rather than sending it
	 out over the network.

	MAC address
	The addresses beginning with 0:e0: are
	 MAC addresses. FreeBSD will
	 automatically identify any hosts,
	 test0 in the example, on the
	 local Ethernet and add a route for that host over the
	 Ethernet interface, re0. This type
	 of route has a timeout, seen in the
	 Expire column, which is used if the
	 host does not respond in a specific amount of time.
	 When this happens, the route to this host will be
	 automatically deleted. These hosts are identified using
	 the Routing Information Protocol
	 (RIP), which calculates routes to
	 local hosts based upon a shortest path
	 determination.

	subnet
	FreeBSD will automatically add subnet routes for the
	 local subnet. In this example, 10.20.30.255 is the
	 broadcast address for the subnet 10.20.30 and
	 example.com is the
	 domain name associated with that subnet. The
	 designation link#1 refers to the
	 first Ethernet card in the machine.
Local network hosts and local subnets have their
	 routes automatically configured by a daemon called
	 routed(8). If it is not running, only routes which
	 are statically defined by the administrator will
	 exist.

	host
	The host1 line refers to the host
	 by its Ethernet address. Since it is the sending host,
	 FreeBSD knows to use the loopback interface
	 (lo0) rather than the Ethernet
	 interface.
The two host2 lines represent
	 aliases which were created using ifconfig(8). The
	 => symbol after the
	 lo0 interface says that an alias
	 has been set in addition to the loopback address. Such
	 routes only show up on the host that supports the alias
	 and all other hosts on the local network will have a
	 link#1 line for such routes.

	224
	The final line (destination subnet 224) deals with
	 multicasting.

Various attributes of each route can be seen in the
	Flags column. Table 31.1, “Commonly Seen Routing Table Flags”
	summarizes some of these flags and their meanings:
Table 31.1. Commonly Seen Routing Table Flags
	Command	Purpose
	U	The route is active (up).
	H	The route destination is a single host.
	G	Send anything for this destination on to this
		gateway, which will figure out from there where to
		send it.
	S	This route was statically configured.
	C	Clones a new route based upon this route for
		machines to connect to. This type of route is
		normally used for local networks.
	W	The route was auto-configured based upon a local
		area network (clone) route.
	L	Route involves references to Ethernet (link)
		hardware.

On a FreeBSD system, the default route can defined in
	/etc/rc.conf by specifying the
	IP address of the default gateway:
defaultrouter="10.20.30.1"
It is also possible to manually add the route using
	route:
route add default 10.20.30.1
Note that manually added routes will not survive a reboot.
	For more information on manual manipulation of network
	routing tables, refer to route(8).
31.2.2. Configuring a Router with Static Routes
Contributed by Al Hoang. A FreeBSD system can be configured as the default gateway, or
	router, for a network if it is a dual-homed system. A
	dual-homed system is a host which resides on at least two
	different networks. Typically, each network is connected to a
	separate network interface, though IP
	aliasing can be used to bind multiple addresses, each on a
	different subnet, to one physical interface.
In order for the system to forward packets between
	interfaces, FreeBSD must be configured as a router. Internet
	standards and good engineering practice prevent the FreeBSD
	Project from enabling this feature by default, but it can be
	configured to start at boot by adding this line to
	/etc/rc.conf:
gateway_enable="YES" # Set to YES if this host will be a gateway
To enable routing now, set the sysctl(8) variable
	net.inet.ip.forwarding to
	1. To stop routing, reset this variable to
	0.
The routing table of a router needs additional routes so
	it knows how to reach other networks. Routes can be either
	added manually using static routes or routes can be
	automatically learned using a routing protocol. Static routes
	are appropriate for small networks and this section describes
	how to add a static routing entry for a small network.
Note:
For large networks, static routes quickly become
	 unscalable. FreeBSD comes with the standard
	 BSD routing daemon routed(8), which
	 provides the routing protocols RIP,
	 versions 1 and 2, and IRDP. Support for
	 the BGP and OSPF
	 routing protocols can be installed using the
	 net/zebra package or port.

Consider the following network:

In this scenario, RouterA is a
	FreeBSD machine that is acting as a router to the rest of the
	Internet. It has a default route set to 10.0.0.1 which allows it to
	connect with the outside world.
	RouterB is already configured to use
	192.168.1.1 as its
	default gateway.
Before adding any static routes, the routing table on
	RouterA looks like this:
% netstat -nr
Routing tables

Internet:
Destination Gateway Flags Refs Use Netif Expire
default 10.0.0.1 UGS 0 49378 xl0
127.0.0.1 127.0.0.1 UH 0 6 lo0
10.0.0.0/24 link#1 UC 0 0 xl0
192.168.1.0/24 link#2 UC 0 0 xl1
With the current routing table,
	RouterA does not have a route to the
	192.168.2.0/24
	network. The following command adds the Internal Net
	 2 network to RouterA's
	routing table using 192.168.1.2 as the next
	hop:
route add -net 192.168.2.0/24 192.168.1.2
Now, RouterA can reach any host
	on the 192.168.2.0/24 network.
	However, the routing information will not persist if the FreeBSD
	system reboots. If a static route needs to be persistent, add
	it to /etc/rc.conf:
Add Internal Net 2 as a persistent static route
static_routes="internalnet2"
route_internalnet2="-net 192.168.2.0/24 192.168.1.2"
The static_routes configuration
	variable is a list of strings separated by a space, where each
	string references a route name. The variable
	route_internalnet2
	contains the static route for that route name.
Using more than one string in
	static_routes creates multiple static
	routes. The following shows an example of adding static
	routes for the 192.168.0.0/24 and
	192.168.1.0/24
	networks:
static_routes="net1 net2"
route_net1="-net 192.168.0.0/24 192.168.0.1"
route_net2="-net 192.168.1.0/24 192.168.1.1"
31.2.3. Troubleshooting
When an address space is assigned to a network, the
	service provider configures their routing tables so that all
	traffic for the network will be sent to the link for the site.
	But how do external sites know to send their packets to the
	network's ISP?
There is a system that keeps track of all assigned
	address spaces and defines their point of connection to the
	Internet backbone, or the main trunk lines that carry Internet
	traffic across the country and around the world. Each
	backbone machine has a copy of a master set of tables, which
	direct traffic for a particular network to a specific
	backbone carrier, and from there down the chain of service
	providers until it reaches a particular network.
It is the task of the service provider to advertise to
	the backbone sites that they are the point of connection, and
	thus the path inward, for a site. This is known as route
	propagation.
Sometimes, there is a problem with route propagation and
	some sites are unable to connect. Perhaps the most useful
	command for trying to figure out where routing is breaking
	down is traceroute. It is useful when
	ping fails.
When using traceroute, include the
	address of the remote host to connect to. The output will
	show the gateway hosts along the path of the attempt,
	eventually either reaching the target host, or terminating
	because of a lack of connection. For more information, refer
	to traceroute(8).
31.2.4. Multicast Considerations
FreeBSD natively supports both multicast applications and
	multicast routing. Multicast applications do not require any
	special configuration in order to run on FreeBSD. Support for
	multicast routing requires that the following option be
	compiled into a custom kernel:
options MROUTING
The multicast routing daemon,
	mrouted can be installed using the
	net/mrouted package or port. This daemon
	implements the DVMRP multicast routing
	protocol and is configured by editing
	/usr/local/etc/mrouted.conf in order to
	set up the tunnels and DVMRP. The
	installation of mrouted also
	installs map-mbone and
	mrinfo, as well as their associated
	man pages. Refer to these for configuration examples.
Note:
DVMRP has largely been replaced by
	 the PIM protocol in many multicast
	 installations. Refer to pim(4) for more
	 information.

28.12. Using procmail
Contributed by Marc Silver. procmail is a powerful
 application used to filter incoming mail. It allows users to
 define “rules” which can be matched to incoming
 mails to perform specific functions or to reroute mail to
 alternative mailboxes or email addresses.
 procmail can be installed using the
 mail/procmail port. Once installed, it can
 be directly integrated into most MTAs.
 Consult the MTA documentation for more
 information. Alternatively, procmail
 can be integrated by adding the following line to a
 .forward in the home directory of the
 user:
"|exec /usr/local/bin/procmail || exit 75"
The following section displays some basic
 procmail rules, as well as brief
 descriptions of what they do. Rules must be inserted into a
 .procmailrc, which must reside in the
 user's home directory.
The majority of these rules can be found in
 procmailex(5).
To forward all mail from <user@example.com> to
 an external address of <goodmail@example2.com>:
:0
* ^From.*user@example.com
! goodmail@example2.com
To forward all mails shorter than 1000 bytes to an external
 address of <goodmail@example2.com>:
:0
* < 1000
! goodmail@example2.com
To send all mail sent to
 <alternate@example.com> to a mailbox called
 alternate:
:0
* ^TOalternate@example.com
alternate
To send all mail with a subject of “Spam” to
 /dev/null:
:0
^Subject:.*Spam
/dev/null
A useful recipe that parses incoming FreeBSD.org mailing lists and
 places each list in its own mailbox:
:0
* ^Sender:.owner-freebsd-\/[^@]+@FreeBSD.ORG
{
	LISTNAME=${MATCH}
	:0
	* LISTNAME??^\/[^@]+
	FreeBSD-${MATCH}
}
Appendix B. Bibliography
While manual pages provide a definitive reference for
 individual pieces of the FreeBSD operating system, they seldom
 illustrate how to put the pieces together to
 make the whole operating system run smoothly. For this, there is
 no substitute for a good book or users' manual on UNIX® system
 administration.
B.1. Books Specific to FreeBSD
International books:
	Using
	 FreeBSD (in Traditional Chinese), published by
	 Drmaster,
	 1997. ISBN 9-578-39435-7.

	FreeBSD Unleashed (Simplified Chinese translation),
	 published by
	 China Machine
	 Press. ISBN 7-111-10201-0.

	FreeBSD From Scratch Second Edition (in Simplified
	 Chinese), published by China Machine Press. ISBN
	 7-111-10286-X.

	FreeBSD Handbook Second Edition (Simplified Chinese
	 translation), published by Posts &
	 Telecom Press. ISBN 7-115-10541-3.

	FreeBSD & Windows (in Simplified Chinese), published
	 by China Railway
	 Publishing House. ISBN 7-113-03845-X

	FreeBSD Internet Services HOWTO (in Simplified Chinese),
	 published by China Railway Publishing House. ISBN
	 7-113-03423-3

	FreeBSD (in Japanese), published by CUTT. ISBN
	 4-906391-22-2 C3055 P2400E.

	Complete
	 Introduction to FreeBSD (in Japanese), published by
	 Shoeisha Co.,
	 Ltd. ISBN 4-88135-473-6 P3600E.

	Personal
	 UNIX Starter Kit FreeBSD (in Japanese), published
	 by ASCII.
	 ISBN 4-7561-1733-3 P3000E.

	FreeBSD Handbook (Japanese translation), published by
	 ASCII.
	 ISBN 4-7561-1580-2 P3800E.

	FreeBSD mit Methode (in German), published by
	 Computer und Literatur
	 Verlag/Vertrieb Hanser, 1998. ISBN
	 3-932311-31-0.

	
	 FreeBSD de Luxe (in German), published by
	 Verlag Modere
	 Industrie, 2003. ISBN 3-8266-1343-0.

	FreeBSD
	 Install and Utilization Manual (in Japanese),
	 published by
	 Mainichi
	 Communications Inc., 1998. ISBN
	 4-8399-0112-0.

	Onno W Purbo, Dodi Maryanto, Syahrial Hubbany, Widjil
	 Widodo Building Internet
	 Server with FreeBSD (in Indonesia
	 Language), published by
	 Elex
	 Media Komputindo.

	Absolute BSD: The Ultimate Guide to FreeBSD (Traditional
	 Chinese translation), published by GrandTech
	 Press, 2003. ISBN 986-7944-92-5.

	The
	 FreeBSD 6.0 Book (in Traditional Chinese),
	 published by Drmaster, 2006. ISBN 9-575-27878-X.

English language books:
	Absolute
	 FreeBSD, 2nd Edition: The Complete Guide to
	 FreeBSD, published by
	 No Starch
	 Press, 2007. ISBN: 978-1-59327-151-0

	
	 The Complete FreeBSD, published by
	 O'Reilly,
	 2003. ISBN: 0596005164

	The
	 FreeBSD Corporate Networker's Guide, published by
	 Addison-Wesley,
	 2000. ISBN: 0201704811

	
	 FreeBSD: An Open-Source Operating System for Your Personal
	 Computer, published by The Bit Tree Press, 2001.
	 ISBN: 0971204500

	Teach Yourself FreeBSD in 24 Hours, published by Sams,
	 2002. ISBN: 0672324245

	FreeBSD 6 Unleashed, published by Sams,
	 2006. ISBN: 0672328755

	FreeBSD: The Complete Reference, published by McGrawHill,
	 2003. ISBN: 0072224096

23.2. FreeBSD Update
Written by Tom Rhodes. Based on notes provided by Colin Percival. Applying security patches in a timely manner and upgrading
 to a newer release of an operating system are important aspects
 of ongoing system administration. FreeBSD includes a utility
 called freebsd-update which can be used to
 perform both these tasks.
This utility supports binary security and errata updates to
 FreeBSD, without the need to manually compile and install the patch
 or a new kernel. Binary updates are available for all
 architectures and releases currently supported by the security
 team. The list of supported releases and their estimated
 end-of-life dates are listed at https://www.FreeBSD.org/security/.
This utility also supports operating system upgrades to
 minor point releases as well as upgrades to another release
 branch. Before upgrading to a new release, review its release
 announcement as it contains important information pertinent to
 the release. Release announcements are available from https://www.FreeBSD.org/releases/.
Note:
If a crontab utilizing the features of
	freebsd-update(8) exists, it must be disabled before
	upgrading the operating system.

This section describes the configuration file used by
 freebsd-update, demonstrates how to apply a
 security patch and how to upgrade to a minor or major operating
 system release, and discusses some of the considerations when
 upgrading the operating system.
23.2.1. The Configuration File
The default configuration file for
	freebsd-update works as-is. Some users may
	wish to tweak the default configuration in
	/etc/freebsd-update.conf, allowing
	better control of the process. The comments in this file
	explain the available options, but the following may require a
	bit more explanation:
Components of the base system which should be kept updated.
Components world kernel
This parameter controls which parts of FreeBSD will be kept
	up-to-date. The default is to update the entire base system
	and the kernel. Individual components can instead be
	specified, such as src/base or
	src/sys. However, the best option is to
	leave this at the default as changing it to include specific
	items requires every needed item to be listed. Over time,
	this could have disastrous consequences as source code and
	binaries may become out of sync.
Paths which start with anything matching an entry in an IgnorePaths
statement will be ignored.
IgnorePaths /boot/kernel/linker.hints
To leave specified directories, such as
	/bin or /sbin,
	untouched during the update process, add their paths to this
	statement. This option may be used to prevent
	freebsd-update from overwriting local
	modifications.
Paths which start with anything matching an entry in an UpdateIfUnmodified
statement will only be updated if the contents of the file have not been
modified by the user (unless changes are merged; see below).
UpdateIfUnmodified /etc/ /var/ /root/ /.cshrc /.profile
This option will only update unmodified configuration
	files in the specified directories. Any changes made by the
	user will prevent the automatic updating of these files.
	There is another option,
	KeepModifiedMetadata, which will instruct
	freebsd-update to save the changes during
	the merge.
When upgrading to a new FreeBSD release, files which match MergeChanges
will have any local changes merged into the version from the new release.
MergeChanges /etc/ /var/named/etc/ /boot/device.hints
List of directories with configuration files that
	freebsd-update should attempt to merge.
	The file merge process is a series of diff(1) patches
	similar to mergemaster(8), but with fewer options.
	Merges are either accepted, open an editor, or cause
	freebsd-update to abort. When in doubt,
	backup /etc and just accept the merges.
	See mergemaster(8) for more information about
	mergemaster.
Directory in which to store downloaded updates and temporary
files used by FreeBSD Update.
WorkDir /var/db/freebsd-update
This directory is where all patches and temporary files
	are placed. In cases where the user is doing a version
	upgrade, this location should have at least a gigabyte of disk
	space available.
When upgrading between releases, should the list of Components be
read strictly (StrictComponents yes) or merely as a list of components
which *might* be installed of which FreeBSD Update should figure out
which actually are installed and upgrade those (StrictComponents no)?
StrictComponents no
When this option is set to yes,
	freebsd-update will assume that the
	Components list is complete and will not
	attempt to make changes outside of the list. Effectively,
	freebsd-update will attempt to update
	every file which belongs to the Components
	list.
23.2.2. Applying Security Patches
The process of applying FreeBSD security patches has been
	simplified, allowing an administrator to keep a system fully
	patched using freebsd-update. More
	information about FreeBSD security advisories can be found in
	Section 13.11, “FreeBSD Security Advisories”.
FreeBSD security patches may be downloaded and installed
	using the following commands. The first command will
	determine if any outstanding patches are available, and if so,
	will list the files that will be modifed if the patches are
	applied. The second command will apply the patches.
freebsd-update fetch
freebsd-update install
If the update applies any kernel patches, the system will
	need a reboot in order to boot into the patched kernel. If
	the patch was applied to any running binaries, the affected
	applications should be restarted so that the patched version
	of the binary is used.
Note:
Usually, the user needs to be prepared to reboot the
	 system. To know if a reboot is required by a kernel update,
	 execute the commands freebsd-version -k
	 and uname -r and if it differs a reboot
	 is required.

The system can be configured to automatically check for
	updates once every day by adding this entry to
	/etc/crontab:
@daily root freebsd-update cron
If patches exist, they will automatically be downloaded
	but will not be applied. The root user will be sent an
	email so that the patches may be reviewed and manually
	installed with
	freebsd-update install.
If anything goes wrong, freebsd-update
	has the ability to roll back the last set of changes with the
	following command:
freebsd-update rollback
Uninstalling updates... done.
Again, the system should be restarted if the kernel or any
	kernel modules were modified and any affected binaries should
	be restarted.
Only the GENERIC kernel can be
	automatically updated by freebsd-update.
	If a custom kernel is installed, it will have to be rebuilt
	and reinstalled after freebsd-update
	finishes installing the updates. The default kernel name
	is GENERIC. The uname(1) command
	may be used to verify its installation.
Note:
Always keep a copy of the GENERIC
	 kernel in /boot/GENERIC. It will be
	 helpful in diagnosing a variety of problems and in
	 performing version upgrades. Refer to Section 23.2.3.1, “Custom Kernels with FreeBSD 9.X and Later” for
	 instructions on how to get a copy of the
	 GENERIC kernel.

Unless the default configuration in
	/etc/freebsd-update.conf has been
	changed, freebsd-update will install the
	updated kernel sources along with the rest of the updates.
	Rebuilding and reinstalling a new custom kernel can then be
	performed in the usual way.
The updates distributed by
	freebsd-update do not always involve the
	kernel. It is not necessary to rebuild a custom kernel if the
	kernel sources have not been modified by
	freebsd-update install. However,
	freebsd-update will always update
	/usr/src/sys/conf/newvers.sh. The
	current patch level, as indicated by the -p
	number reported by uname -r, is obtained
	from this file. Rebuilding a custom kernel, even if nothing
	else changed, allows uname to accurately
	report the current patch level of the system. This is
	particularly helpful when maintaining multiple systems, as it
	allows for a quick assessment of the updates installed in each
	one.
23.2.3. Performing Major and Minor Version Upgrades
Upgrades from one minor version of FreeBSD to another, like
	from FreeBSD 9.0 to FreeBSD 9.1, are called
	minor version upgrades.
	Major version upgrades occur when FreeBSD
	is upgraded from one major version to another, like from
	FreeBSD 9.X to FreeBSD 10.X. Both types of upgrades can
	be performed by providing freebsd-update
	with a release version target.
Note:
If the system is running a custom kernel, make sure that
	 a copy of the GENERIC kernel exists in
	 /boot/GENERIC before starting the
	 upgrade. Refer to Section 23.2.3.1, “Custom Kernels with FreeBSD 9.X and Later” for
	 instructions on how to get a copy of the
	 GENERIC kernel.

The following command, when run on a FreeBSD 9.0 system,
	will upgrade it to FreeBSD 9.1:
freebsd-update -r 9.1-RELEASE upgrade
After the command has been received,
	freebsd-update will evaluate the
	configuration file and current system in an attempt to gather
	the information necessary to perform the upgrade. A screen
	listing will display which components have and have not been
	detected. For example:
Looking up update.FreeBSD.org mirrors... 1 mirrors found.
Fetching metadata signature for 9.0-RELEASE from update1.FreeBSD.org... done.
Fetching metadata index... done.
Inspecting system... done.

The following components of FreeBSD seem to be installed:
kernel/smp src/base src/bin src/contrib src/crypto src/etc src/games
src/gnu src/include src/krb5 src/lib src/libexec src/release src/rescue
src/sbin src/secure src/share src/sys src/tools src/ubin src/usbin
world/base world/info world/lib32 world/manpages

The following components of FreeBSD do not seem to be installed:
kernel/generic world/catpages world/dict world/doc world/games
world/proflibs

Does this look reasonable (y/n)? y
At this point, freebsd-update will
	attempt to download all files required for the upgrade. In
	some cases, the user may be prompted with questions regarding
	what to install or how to proceed.
When using a custom kernel, the above step will produce a
	warning similar to the following:
WARNING: This system is running a "MYKERNEL" kernel, which is not a
kernel configuration distributed as part of FreeBSD 9.0-RELEASE.
This kernel will not be updated: you MUST update the kernel manually
before running "/usr/sbin/freebsd-update install"
This warning may be safely ignored at this point. The
	updated GENERIC kernel will be used as an
	intermediate step in the upgrade process.
Once all the patches have been downloaded to the local
	system, they will be applied. This process may take a while,
	depending on the speed and workload of the machine.
	Configuration files will then be merged. The merging process
	requires some user intervention as a file may be merged or an
	editor may appear on screen for a manual merge. The results
	of every successful merge will be shown to the user as the
	process continues. A failed or ignored merge will cause the
	process to abort. Users may wish to make a backup of
	/etc and manually merge important files,
	such as master.passwd or
	group at a later time.
Note:
The system is not being altered yet as all patching and
	 merging is happening in another directory. Once all patches
	 have been applied successfully, all configuration files have
	 been merged and it seems the process will go smoothly, the
	 changes can be committed to disk by the user using the
	 following command:
freebsd-update install

The kernel and kernel modules will be patched first. If
	the system is running with a custom kernel, use
	nextboot(8) to set the kernel for the next boot to the
	updated /boot/GENERIC:
nextboot -k GENERIC
Warning:
Before rebooting with the GENERIC
	 kernel, make sure it contains all the drivers required for
	 the system to boot properly and connect to the network, if
	 the machine being updated is accessed remotely. In
	 particular, if the running custom kernel contains built-in
	 functionality usually provided by kernel modules, make sure
	 to temporarily load these modules into the
	 GENERIC kernel using the
	 /boot/loader.conf facility. It is
	 recommended to disable non-essential services as well as any
	 disk and network mounts until the upgrade process is
	 complete.

The machine should now be restarted with the updated
	kernel:
shutdown -r now
Once the system has come back online, restart
	freebsd-update using the following command.
	Since the state of the process has been saved,
	freebsd-update will not start from the
	beginning, but will instead move on to the next phase and
	remove all old shared libraries and object files.
freebsd-update install
Note:
Depending upon whether any library version numbers were
	 bumped, there may only be two install phases instead of
	 three.

The upgrade is now complete. If this was a major version
	upgrade, reinstall all ports and packages as described in
	Section 23.2.3.2, “Upgrading Packages After a Major Version
	 Upgrade”.
23.2.3.1. Custom Kernels with FreeBSD 9.X and Later
Before using freebsd-update, ensure
	 that a copy of the GENERIC kernel
	 exists in /boot/GENERIC. If a custom
	 kernel has only been built once, the kernel in
	 /boot/kernel.old is the
	 GENERIC kernel. Simply rename this
	 directory to /boot/kernel.
If a custom kernel has been built more than once or if
	 it is unknown how many times the custom kernel has been
	 built, obtain a copy of the GENERIC
	 kernel that matches the current version of the operating
	 system. If physical access to the system is available, a
	 copy of the GENERIC kernel can be
	 installed from the installation media:
mount /cdrom
cd /cdrom/usr/freebsd-dist
tar -C/ -xvf kernel.txz boot/kernel/kernel
Alternately, the GENERIC kernel may
	 be rebuilt and installed from source:
cd /usr/src
make kernel __MAKE_CONF=/dev/null SRCCONF=/dev/null
For this kernel to be identified as the
	 GENERIC kernel by
	 freebsd-update, the
	 GENERIC configuration file must not
	 have been modified in any way. It is also suggested that
	 the kernel is built without any other special
	 options.
Rebooting into the GENERIC kernel
	 is not required as freebsd-update only
	 needs /boot/GENERIC to exist.
23.2.3.2. Upgrading Packages After a Major Version
	 Upgrade
Generally, installed applications will continue to work
	 without problems after minor version upgrades. Major
	 versions use different Application Binary Interfaces
	 (ABIs), which will break most
	 third-party applications. After a major version upgrade,
	 all installed packages and ports need to be upgraded.
	 Packages can be upgraded using pkg
	 upgrade. To upgrade installed ports, use a
	 utility such as
	 ports-mgmt/portmaster.
A forced upgrade of all installed packages will replace
	 the packages with fresh versions from the repository even if
	 the version number has not increased. This is required
	 because of the ABI version change when upgrading between
	 major versions of FreeBSD. The forced upgrade can be
	 accomplished by performing:
pkg-static upgrade -f
A rebuild of all installed applications can be
	 accomplished with this command:
portmaster -af
This command will display the configuration screens for
	 each application that has configurable options and wait for
	 the user to interact with those screens. To prevent this
	 behavior, and use only the default options, include
	 -G in the above command.
Once the software upgrades are complete, finish the
	 upgrade process with a final call to
	 freebsd-update in order to tie up all the
	 loose ends in the upgrade process:
freebsd-update install
If the GENERIC kernel was
	 temporarily used, this is the time to build and install a
	 new custom kernel using the instructions in Chapter 8, Configuring the FreeBSD Kernel.
Reboot the machine into the new FreeBSD version. The
	 upgrade process is now complete.
23.2.4. System State Comparison
The state of the installed FreeBSD version against a known
	good copy can be tested using
	freebsd-update IDS. This command evaluates
	the current version of system utilities, libraries, and
	configuration files and can be used as a built-in Intrusion
	Detection System (IDS).
Warning:
This command is not a replacement for a real
	 IDS such as
	 security/snort. As
	 freebsd-update stores data on disk, the
	 possibility of tampering is evident. While this possibility
	 may be reduced using kern.securelevel and
	 by storing the freebsd-update data on a
	 read-only file system when not in use, a better solution
	 would be to compare the system against a secure disk, such
	 as a DVD or securely stored external
	 USB disk device. An alternative method
	 for providing IDS functionality using a
	 built-in utility is described in Section 13.2.6, “Binary Verification”

To begin the comparison, specify the output file to save
	the results to:
freebsd-update IDS >> outfile.ids
The system will now be inspected and a lengthy listing of
	files, along with the SHA256 hash values
	for both the known value in the release and the current
	installation, will be sent to the specified output
	file.
The entries in the listing are extremely long, but the
	output format may be easily parsed. For instance, to obtain a
	list of all files which differ from those in the release,
	issue the following command:
cat outfile.ids | awk '{ print $1 }' | more
/etc/master.passwd
/etc/motd
/etc/passwd
/etc/pf.conf
This sample output has been truncated as many more files
	exist. Some files have natural modifications. For example,
	/etc/passwd will be modified if users
	have been added to the system. Kernel modules may differ as
	freebsd-update may have updated them. To
	exclude specific files or directories, add them to the
	IDSIgnorePaths option in
	/etc/freebsd-update.conf.
Chapter 21. Virtualization
Contributed by Murray Stokely. bhyve section by Allan Jude. Xen section by Benedict Reuschling. 21.1. Synopsis
Virtualization software allows multiple operating systems to
 run simultaneously on the same computer. Such software systems
 for PCs often involve a host operating system
 which runs the virtualization software and supports any number
 of guest operating systems.
After reading this chapter, you will know:
	The difference between a host operating system and a
	 guest operating system.

	How to install FreeBSD on an Intel®-based Apple®
	 Mac® computer.

	How to install FreeBSD on Microsoft® Windows® with
	 Virtual PC.

	How to install FreeBSD as a guest in
	 bhyve.

	How to tune a FreeBSD system for best performance under
	 virtualization.

Before reading this chapter, you should:
	Understand the basics of UNIX®
	 and FreeBSD.

	Know how to install
	 FreeBSD.

	Know how to set up a
	 network connection.

	Know how to install additional
	 third-party software.

31.9. IPv6
Originally Written by Aaron Kaplan. Restructured and Added by Tom Rhodes. Extended by Brad Davis. IPv6 is the new version of the well known
 IP protocol, also known as
 IPv4. IPv6 provides
 several advantages over IPv4 as well as many
 new features:
	Its 128-bit address space allows for
	 340,282,366,920,938,463,463,374,607,431,768,211,456
	 addresses. This addresses the IPv4
	 address shortage and eventual IPv4
	 address exhaustion.

	Routers only store network aggregation addresses in
	 their routing tables, thus reducing the average space of a
	 routing table to 8192 entries. This addresses the
	 scalability issues associated with IPv4,
	 which required every allocated block of
	 IPv4 addresses to be exchanged between
	 Internet routers, causing their routing tables to become too
	 large to allow efficient routing.

	Address autoconfiguration (RFC2462).

	Mandatory multicast addresses.

	Built-in IPsec (IP
	 security).

	Simplified header structure.

	Support for mobile IP.

	IPv6-to-IPv4
	 transition mechanisms.

FreeBSD includes the http://www.kame.net/
 IPv6 reference implementation and comes
 with everything needed to use IPv6. This
 section focuses on getting IPv6 configured
 and running.
31.9.1. Background on IPv6 Addresses
There are three different types of IPv6
	addresses:
	Unicast
	A packet sent to a unicast address arrives at the
	 interface belonging to the address.

	Anycast
	These addresses are syntactically indistinguishable
	 from unicast addresses but they address a group of
	 interfaces. The packet destined for an anycast address
	 will arrive at the nearest router interface. Anycast
	 addresses are only used by routers.

	Multicast
	These addresses identify a group of interfaces. A
	 packet destined for a multicast address will arrive at
	 all interfaces belonging to the multicast group. The
	 IPv4 broadcast address, usually
	 xxx.xxx.xxx.255, is
	 expressed by multicast addresses in
	 IPv6.

When reading an IPv6 address, the
	canonical form is represented as
	x:x:x:x:x:x:x:x, where each
	x represents a 16 bit hex value. An
	example is
	FEBC:A574:382B:23C1:AA49:4592:4EFE:9982.
Often, an address will have long substrings of all zeros.
	A :: (double colon) can be used to replace
	one substring per address. Also, up to three leading
	0s per hex value can be omitted. For
	example, fe80::1 corresponds to the
	canonical form
	fe80:0000:0000:0000:0000:0000:0000:0001.
A third form is to write the last 32 bits using the well
	known IPv4 notation. For example,
	2002::10.0.0.1 corresponds to the
	hexadecimal canonical representation
	2002:0000:0000:0000:0000:0000:0a00:0001,
	which in turn is equivalent to
	2002::a00:1.
To view a FreeBSD system's IPv6 address,
	use ifconfig(8):
ifconfig
rl0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500
 inet 10.0.0.10 netmask 0xffffff00 broadcast 10.0.0.255
 inet6 fe80::200:21ff:fe03:8e1%rl0 prefixlen 64 scopeid 0x1
 ether 00:00:21:03:08:e1
 media: Ethernet autoselect (100baseTX)
 status: active
In this example, the rl0 interface is
	using fe80::200:21ff:fe03:8e1%rl0, an
	auto-configured link-local address which was automatically
	generated from the MAC address.
Some IPv6 addresses are reserved. A
	summary of these reserved addresses is seen in Table 31.3, “Reserved IPv6 Addresses”:
Table 31.3. Reserved IPv6 Addresses
	IPv6 address	Prefixlength (Bits)	Description	Notes
	::	128 bits	unspecified	Equivalent to 0.0.0.0 in
		IPv4.
	::1	128 bits	loopback address	Equivalent to 127.0.0.1 in
		IPv4.
	::00:xx:xx:xx:xx	96 bits	embedded IPv4	The lower 32 bits are the compatible
		IPv4 address.
	::ff:xx:xx:xx:xx	96 bits	IPv4 mapped
		IPv6 address	The lower 32 bits are the IPv4
		address for hosts which do not support
		IPv6.
	fe80::/10	10 bits	link-local	Equivalent to 169.254.0.0/16 in
		IPv4.
	fc00::/7	7 bits	unique-local	Unique local addresses are intended for local
		communication and are only routable within a set of
		cooperating sites.
	ff00::	8 bits	multicast	
	2000::-3fff:: 	3 bits	global unicast	All global unicast addresses are assigned from
		this pool. The first 3 bits are
		001.

For further information on the structure of
	IPv6 addresses, refer to RFC3513.
31.9.2. Configuring IPv6
To configure a FreeBSD system as an IPv6
	client, add these two lines to
	rc.conf:
ifconfig_rl0_ipv6="inet6 accept_rtadv"
rtsold_enable="YES"
The first line enables the specified interface to receive
	router advertisement messages. The second line enables the
	router solicitation daemon, rtsol(8).
If the interface needs a statically assigned
	IPv6 address, add an entry to specify the
	static address and associated prefix length:
ifconfig_rl0_ipv6="inet6 2001:db8:4672:6565:2026:5043:2d42:5344 prefixlen 64"
To assign a default router, specify its address:
ipv6_defaultrouter="2001:db8:4672:6565::1"
31.9.3. Connecting to a Provider
In order to connect to other IPv6
	networks, one must have a provider or a tunnel that supports
	IPv6:
	Contact an Internet Service Provider to see if they
	 offer IPv6.

	Hurricane
	 Electric offers tunnels with end-points all
	 around the globe.

Note:
Install the net/freenet6 package or
	 port for a dial-up connection.

This section demonstrates how to take the directions from
	a tunnel provider and convert them into
	/etc/rc.conf settings that will persist
	through reboots.
The first /etc/rc.conf entry creates
	the generic tunneling interface
	gif0:
cloned_interfaces="gif0"
Next, configure that interface with the
	IPv4 addresses of the local and remote
	endpoints. Replace MY_IPv4_ADDR
	and REMOTE_IPv4_ADDR with the
	actual IPv4 addresses:
create_args_gif0="tunnel MY_IPv4_ADDR REMOTE_IPv4_ADDR"
To apply the IPv6 address that has been
	assigned for use as the IPv6 tunnel
	endpoint, add this line, replacing
	MY_ASSIGNED_IPv6_TUNNEL_ENDPOINT_ADDR
	with the assigned address:
ifconfig_gif0_ipv6="inet6 MY_ASSIGNED_IPv6_TUNNEL_ENDPOINT_ADDR"
Then, set the default route for the other side of the
	IPv6 tunnel. Replace
	MY_IPv6_REMOTE_TUNNEL_ENDPOINT_ADDR
	with the default gateway address assigned by the
	provider:
ipv6_defaultrouter="MY_IPv6_REMOTE_TUNNEL_ENDPOINT_ADDR"
If the FreeBSD system will route IPv6
	packets between the rest of the network and the world, enable
	the gateway using this line:
ipv6_gateway_enable="YES"
31.9.4. Router Advertisement and Host Auto Configuration
This section demonstrates how to setup rtadvd(8) to
	advertise the IPv6 default route.
To enable rtadvd(8), add the following to
	/etc/rc.conf:
rtadvd_enable="YES"
It is important to specify the interface on which to
	do IPv6 router advertisement. For example,
	to tell rtadvd(8) to use
	rl0:
rtadvd_interfaces="rl0"
Next, create the configuration file,
	/etc/rtadvd.conf as seen in this
	example:
rl0:\
	:addrs#1:addr="2001:db8:1f11:246::":prefixlen#64:tc=ether:
Replace rl0 with the interface
	to be used and 2001:db8:1f11:246::
	with the prefix of the allocation.
For a dedicated /64 subnet, nothing else needs
	to be changed. Otherwise, change the
	prefixlen# to the correct value.
31.9.5. IPv6 and IPv6
	Address Mapping
When IPv6 is enabled on a server, there
	may be a need to enable IPv4 mapped
	IPv6 address communication. This
	compatibility option allows for IPv4
	addresses to be represented as IPv6
	addresses. Permitting IPv6 applications
	to communicate with IPv4 and vice versa
	may be a security issue.
This option may not be required in most cases and is
	available only for compatibility. This option will allow
	IPv6-only applications to work with
	IPv4 in a dual stack environment. This
	is most useful for third party applications which may not
	support an IPv6-only environment. To
	enable this feature,
	add the following to /etc/rc.conf:
ipv6_ipv4mapping="YES"
Reviewing the information in RFC 3493,
	section 3.6 and 3.7 as well as RFC 4038
	section 4.2 may be useful to some administrators.
29.2. The inetd
 Super-Server
The inetd(8) daemon is sometimes referred to as a
 Super-Server because it manages connections for many services.
 Instead of starting multiple applications, only the
 inetd service needs to be started.
 When a connection is received for a service that is managed by
 inetd, it determines which program
 the connection is destined for, spawns a process for that
 program, and delegates the program a socket. Using
 inetd for services that are not
 heavily used can reduce system load, when compared to running
 each daemon individually in stand-alone mode.
Primarily, inetd is used to
 spawn other daemons, but several trivial protocols are handled
 internally, such as chargen,
 auth,
 time,
 echo,
 discard, and
 daytime.
This section covers the basics of configuring
 inetd.
29.2.1. Configuration File
Configuration of inetd is
	done by editing /etc/inetd.conf. Each
	line of this configuration file represents an application
	which can be started by inetd. By
	default, every line starts with a comment
	(#), meaning that
	inetd is not listening for any
	applications. To configure inetd
	to listen for an application's connections, remove the
	# at the beginning of the line for that
	application.
After saving your edits, configure
	inetd to start at system boot by
	editing /etc/rc.conf:
inetd_enable="YES"
To start inetd now, so that it
	listens for the service you configured, type:
service inetd start
Once inetd is started, it needs
	to be notified whenever a modification is made to
	/etc/inetd.conf:
Example 29.1. Reloading the inetd
	 Configuration File
service inetd reload

Typically, the default entry for an application does not
	need to be edited beyond removing the #.
	In some situations, it may be appropriate to edit the default
	entry.
As an example, this is the default entry for ftpd(8)
	over IPv4:
ftp stream tcp nowait root /usr/libexec/ftpd ftpd -l
The seven columns in an entry are as follows:
service-name
socket-type
protocol
{wait|nowait}[/max-child[/max-connections-per-ip-per-minute[/max-child-per-ip]]]
user[:group][/login-class]
server-program
server-program-arguments
where:
	service-name
	The service name of the daemon to start. It must
	 correspond to a service listed in
	 /etc/services. This determines
	 which port inetd listens on
	 for incoming connections to that service. When using a
	 custom service, it must first be added to
	 /etc/services.

	socket-type
	Either stream,
	 dgram, raw, or
	 seqpacket. Use
	 stream for TCP connections and
	 dgram for
	 UDP services.

	protocol
	Use one of the following protocol names:
	Protocol Name	Explanation
	tcp or tcp4	TCP IPv4
	udp or udp4	UDP IPv4
	tcp6	TCP IPv6
	udp6	UDP IPv6
	tcp46	Both TCP IPv4 and IPv6
	udp46	Both UDP IPv4 and
		 IPv6

	{wait|nowait}[/max-child[/max-connections-per-ip-per-minute[/max-child-per-ip]]]
	In this field, wait or
	 nowait must be specified.
	 max-child,
	 max-connections-per-ip-per-minute and
	 max-child-per-ip are optional.
wait|nowait indicates whether or
	 not the service is able to handle its own socket.
	 dgram socket types must use
	 wait while
	 stream daemons, which are usually
	 multi-threaded, should use nowait.
	 wait usually hands off multiple sockets
	 to a single daemon, while nowait spawns
	 a child daemon for each new socket.
The maximum number of child daemons
	 inetd may spawn is set by
	 max-child. For example, to limit ten
	 instances of the daemon, place a /10
	 after nowait. Specifying
	 /0 allows an unlimited number of
	 children.
max-connections-per-ip-per-minute
	 limits the number of connections from any particular
	 IP address per minute. Once the
	 limit is reached, further connections from this IP
	 address will be dropped until the end of the minute.
	 For example, a value of /10 would
	 limit any particular IP address to
	 ten connection attempts per minute.
	 max-child-per-ip limits the number of
	 child processes that can be started on behalf on any
	 single IP address at any moment.
	 These options can limit excessive resource consumption
	 and help to prevent Denial of Service attacks.
An example can be seen in the default settings for
	 fingerd(8):
finger stream tcp nowait/3/10 nobody /usr/libexec/fingerd fingerd -k -s

	user
	The username the daemon
	 will run as. Daemons typically run as
	 root,
	 daemon, or
	 nobody.

	server-program
	The full path to the daemon. If the daemon is a
	 service provided by inetd
	 internally, use internal.

	server-program-arguments
	Used to specify any command arguments to be passed
	 to the daemon on invocation. If the daemon is an
	 internal service, use
	 internal.

29.2.2. Command-Line Options
Like most server daemons, inetd
	has a number of options that can be used to modify its
	behavior. By default, inetd is
	started with -wW -C 60. These options
	enable TCP wrappers for all services, including internal
	services, and prevent any IP address from
	requesting any service more than 60 times per minute.
To change the default options which are passed to
	inetd, add an entry for
	inetd_flags in
	/etc/rc.conf. If
	inetd is already running, restart
	it with service inetd restart.
The available rate limiting options are:
	-c maximum
	Specify the default maximum number of simultaneous
	 invocations of each service, where the default is
	 unlimited. May be overridden on a per-service basis by
	 using max-child in
	 /etc/inetd.conf.

	-C rate
	Specify the default maximum number of times a
	 service can be invoked from a single
	 IP address per minute. May be
	 overridden on a per-service basis by using
	 max-connections-per-ip-per-minute in
	 /etc/inetd.conf.

	-R rate
	Specify the maximum number of times a service can be
	 invoked in one minute, where the default is
	 256. A rate of 0
	 allows an unlimited number.

	-s maximum
	Specify the maximum number of times a service can be
	 invoked from a single IP address at
	 any one time, where the default is unlimited. May be
	 overridden on a per-service basis by using
	 max-child-per-ip in
	 /etc/inetd.conf.

Additional options are available. Refer to inetd(8)
	for the full list of options.
29.2.3. Security Considerations
Many of the daemons which can be managed by
	inetd are not security-conscious.
	Some daemons, such as fingerd, can
	provide information that may be useful to an attacker. Only
	enable the services which are needed and monitor the system
	for excessive connection attempts.
	max-connections-per-ip-per-minute,
	max-child and
	max-child-per-ip can be used to limit such
	attacks.
By default, TCP wrappers is enabled. Consult
	hosts_access(5) for more information on placing TCP
	restrictions on various
	inetd invoked daemons.
Chapter 5. The X Window System
5.1. Synopsis
An installation of FreeBSD using
 bsdinstall does not automatically
 install a graphical user interface. This chapter describes how
 to install and configure Xorg,
 which provides the open source X Window System used to provide a
 graphical environment. It then describes how to find and
 install a desktop environment or window manager.
Note:
Users who prefer an installation method that automatically
	configures the Xorg should refer
	to FuryBSD,
	GhostBSD or
	MidnightBSD.

For more information on the video hardware that
 Xorg supports, refer to the x.org website.
After reading this chapter, you will know:
	The various components of the X Window System, and how
	 they interoperate.

	How to install and configure
	 Xorg.

	How to install and configure several window managers
	 and desktop environments.

	How to use TrueType® fonts in
	 Xorg.

	How to set up your system for graphical logins
	 (XDM).

Before reading this chapter, you should:
	Know how to install additional third-party
	 software as described in Chapter 4, Installing Applications: Packages and Ports.

19.3. zpool Administration
ZFS administration is divided between two
 main utilities. The zpool utility controls
 the operation of the pool and deals with adding, removing,
 replacing, and managing disks. The
 zfs utility
 deals with creating, destroying, and managing datasets,
 both file systems and
 volumes.
19.3.1. Creating and Destroying Storage Pools
Creating a ZFS storage pool
	(zpool) involves making a number of
	decisions that are relatively permanent because the structure
	of the pool cannot be changed after the pool has been created.
	The most important decision is what types of vdevs into which
	to group the physical disks. See the list of
	vdev types for details
	about the possible options. After the pool has been created,
	most vdev types do not allow additional disks to be added to
	the vdev. The exceptions are mirrors, which allow additional
	disks to be added to the vdev, and stripes, which can be
	upgraded to mirrors by attaching an additional disk to the
	vdev. Although additional vdevs can be added to expand a
	pool, the layout of the pool cannot be changed after pool
	creation. Instead, the data must be backed up and the
	pool destroyed and recreated.
Create a simple mirror pool:
zpool create mypool mirror /dev/ada1 /dev/ada2
zpool status
 pool: mypool
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada1 ONLINE 0 0 0
 ada2 ONLINE 0 0 0

errors: No known data errors
Multiple vdevs can be created at once. Specify multiple
	groups of disks separated by the vdev type keyword,
	mirror in this example:
zpool create mypool mirror /dev/ada1 /dev/ada2 mirror /dev/ada3 /dev/ada4
zpool status
 pool: mypool
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada1 ONLINE 0 0 0
 ada2 ONLINE 0 0 0
 mirror-1 ONLINE 0 0 0
 ada3 ONLINE 0 0 0
 ada4 ONLINE 0 0 0

errors: No known data errors
Pools can also be constructed using partitions rather than
	whole disks. Putting ZFS in a separate
	partition allows the same disk to have other partitions for
	other purposes. In particular, partitions with bootcode and
	file systems needed for booting can be added. This allows
	booting from disks that are also members of a pool. There is
	no performance penalty on FreeBSD when using a partition rather
	than a whole disk. Using partitions also allows the
	administrator to under-provision the
	disks, using less than the full capacity. If a future
	replacement disk of the same nominal size as the original
	actually has a slightly smaller capacity, the smaller
	partition will still fit, and the replacement disk can still
	be used.
Create a
	RAID-Z2 pool using
	partitions:
zpool create mypool raidz2 /dev/ada0p3 /dev/ada1p3 /dev/ada2p3 /dev/ada3p3 /dev/ada4p3 /dev/ada5p3
zpool status
 pool: mypool
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 raidz2-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0
 ada3p3 ONLINE 0 0 0
 ada4p3 ONLINE 0 0 0
 ada5p3 ONLINE 0 0 0

errors: No known data errors
A pool that is no longer needed can be destroyed so that
	the disks can be reused. Destroying a pool involves first
	unmounting all of the datasets in that pool. If the datasets
	are in use, the unmount operation will fail and the pool will
	not be destroyed. The destruction of the pool can be forced
	with -f, but this can cause undefined
	behavior in applications which had open files on those
	datasets.
19.3.2. Adding and Removing Devices
There are two cases for adding disks to a zpool: attaching
	a disk to an existing vdev with
	zpool attach, or adding vdevs to the pool
	with zpool add. Only some
	vdev types allow disks to
	be added to the vdev after creation.
A pool created with a single disk lacks redundancy.
	Corruption can be detected but
	not repaired, because there is no other copy of the data.

	The copies property may
	be able to recover from a small failure such as a bad sector,
	but does not provide the same level of protection as mirroring
	or RAID-Z. Starting with a pool consisting
	of a single disk vdev, zpool attach can be
	used to add an additional disk to the vdev, creating a mirror.
	zpool attach can also be used to add
	additional disks to a mirror group, increasing redundancy and
	read performance. If the disks being used for the pool are
	partitioned, replicate the layout of the first disk on to the
	second, gpart backup and
	gpart restore can be used to make this
	process easier.
Upgrade the single disk (stripe) vdev
	ada0p3 to a mirror by attaching
	ada1p3:
zpool status
 pool: mypool
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0

errors: No known data errors
zpool attach mypool ada0p3 ada1p3
Make sure to wait until resilver is done before rebooting.

If you boot from pool 'mypool', you may need to update
boot code on newly attached disk 'ada1p3'.

Assuming you use GPT partitioning and 'da0' is your new boot disk
you may use the following command:

 gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 da0
gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada1
bootcode written to ada1
zpool status
 pool: mypool
 state: ONLINE
status: One or more devices is currently being resilvered. The pool will
 continue to function, possibly in a degraded state.
action: Wait for the resilver to complete.
 scan: resilver in progress since Fri May 30 08:19:19 2014
 527M scanned out of 781M at 47.9M/s, 0h0m to go
 527M resilvered, 67.53% done
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0 (resilvering)

errors: No known data errors
zpool status
 pool: mypool
 state: ONLINE
 scan: resilvered 781M in 0h0m with 0 errors on Fri May 30 08:15:58 2014
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0

errors: No known data errors
When adding disks to the existing vdev is not an option,
	as for RAID-Z, an alternative method is to
	add another vdev to the pool. Additional vdevs provide higher
	performance, distributing writes across the vdevs. Each vdev
	is responsible for providing its own redundancy. It is
	possible, but discouraged, to mix vdev types, like
	mirror and RAID-Z.
	Adding a non-redundant vdev to a pool containing mirror or
	RAID-Z vdevs risks the data on the entire
	pool. Writes are distributed, so the failure of the
	non-redundant disk will result in the loss of a fraction of
	every block that has been written to the pool.
Data is striped across each of the vdevs. For example,
	with two mirror vdevs, this is effectively a
	RAID 10 that stripes writes across two sets
	of mirrors. Space is allocated so that each vdev reaches 100%
	full at the same time. There is a performance penalty if the
	vdevs have different amounts of free space, as a
	disproportionate amount of the data is written to the less
	full vdev.
When attaching additional devices to a boot pool, remember
	to update the bootcode.
Attach a second mirror group (ada2p3
	and ada3p3) to the existing
	mirror:
zpool status
 pool: mypool
 state: ONLINE
 scan: resilvered 781M in 0h0m with 0 errors on Fri May 30 08:19:35 2014
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0

errors: No known data errors
zpool add mypool mirror ada2p3 ada3p3
gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada2
bootcode written to ada2
gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada3
bootcode written to ada3
zpool status
 pool: mypool
 state: ONLINE
 scan: scrub repaired 0 in 0h0m with 0 errors on Fri May 30 08:29:51 2014
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0
 mirror-1 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0
 ada3p3 ONLINE 0 0 0

errors: No known data errors
Currently, vdevs cannot be removed from a pool, and disks
	can only be removed from a mirror if there is enough remaining
	redundancy. If only one disk in a mirror group remains, it
	ceases to be a mirror and reverts to being a stripe, risking
	the entire pool if that remaining disk fails.
Remove a disk from a three-way mirror group:
zpool status
 pool: mypool
 state: ONLINE
 scan: scrub repaired 0 in 0h0m with 0 errors on Fri May 30 08:29:51 2014
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0

errors: No known data errors
zpool detach mypool ada2p3
zpool status
 pool: mypool
 state: ONLINE
 scan: scrub repaired 0 in 0h0m with 0 errors on Fri May 30 08:29:51 2014
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0

errors: No known data errors
19.3.3. Checking the Status of a Pool
Pool status is important. If a drive goes offline or a
	read, write, or checksum error is detected, the corresponding
	error count increases. The status output
	shows the configuration and status of each device in the pool
	and the status of the entire pool. Actions that need to be
	taken and details about the last scrub
	are also shown.
zpool status
 pool: mypool
 state: ONLINE
 scan: scrub repaired 0 in 2h25m with 0 errors on Sat Sep 14 04:25:50 2013
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 raidz2-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0
 ada3p3 ONLINE 0 0 0
 ada4p3 ONLINE 0 0 0
 ada5p3 ONLINE 0 0 0

errors: No known data errors
19.3.4. Clearing Errors
When an error is detected, the read, write, or checksum
	counts are incremented. The error message can be cleared and
	the counts reset with zpool clear
	 mypool. Clearing the
	error state can be important for automated scripts that alert
	the administrator when the pool encounters an error. Further
	errors may not be reported if the old errors are not
	cleared.
19.3.5. Replacing a Functioning Device
There are a number of situations where it may be
	desirable to replace one disk with a different disk. When
	replacing a working disk, the process keeps the old disk
	online during the replacement. The pool never enters a
	degraded state,
	reducing the risk of data loss.
	zpool replace copies all of the data from
	the old disk to the new one. After the operation completes,
	the old disk is disconnected from the vdev. If the new disk
	is larger than the old disk, it may be possible to grow the
	zpool, using the new space. See Growing a Pool.
Replace a functioning device in the pool:
zpool status
 pool: mypool
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0

errors: No known data errors
zpool replace mypool ada1p3 ada2p3
Make sure to wait until resilver is done before rebooting.

If you boot from pool 'zroot', you may need to update
boot code on newly attached disk 'ada2p3'.

Assuming you use GPT partitioning and 'da0' is your new boot disk
you may use the following command:

 gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 da0
gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada2
zpool status
 pool: mypool
 state: ONLINE
status: One or more devices is currently being resilvered. The pool will
 continue to function, possibly in a degraded state.
action: Wait for the resilver to complete.
 scan: resilver in progress since Mon Jun 2 14:21:35 2014
 604M scanned out of 781M at 46.5M/s, 0h0m to go
 604M resilvered, 77.39% done
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 replacing-1 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0 (resilvering)

errors: No known data errors
zpool status
 pool: mypool
 state: ONLINE
 scan: resilvered 781M in 0h0m with 0 errors on Mon Jun 2 14:21:52 2014
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0

errors: No known data errors
19.3.6. Dealing with Failed Devices
When a disk in a pool fails, the vdev to which the disk
	belongs enters the
	degraded state. All
	of the data is still available, but performance may be reduced
	because missing data must be calculated from the available
	redundancy. To restore the vdev to a fully functional state,
	the failed physical device must be replaced.
	ZFS is then instructed to begin the
	resilver operation.
	Data that was on the failed device is recalculated from
	available redundancy and written to the replacement device.
	After completion, the vdev returns to
	online status.
If the vdev does not have any redundancy, or if multiple
	devices have failed and there is not enough redundancy to
	compensate, the pool enters the
	faulted state. If a
	sufficient number of devices cannot be reconnected to the
	pool, the pool becomes inoperative and data must be restored
	from backups.
When replacing a failed disk, the name of the failed disk
	is replaced with the GUID of the device.
	A new device name parameter for
	zpool replace is not required if the
	replacement device has the same device name.
Replace a failed disk using
	zpool replace:
zpool status
 pool: mypool
 state: DEGRADED
status: One or more devices could not be opened. Sufficient replicas exist for
 the pool to continue functioning in a degraded state.
action: Attach the missing device and online it using 'zpool online'.
 see: http://illumos.org/msg/ZFS-8000-2Q
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool DEGRADED 0 0 0
 mirror-0 DEGRADED 0 0 0
 ada0p3 ONLINE 0 0 0
 316502962686821739 UNAVAIL 0 0 0 was /dev/ada1p3

errors: No known data errors
zpool replace mypool 316502962686821739 ada2p3
zpool status
 pool: mypool
 state: DEGRADED
status: One or more devices is currently being resilvered. The pool will
 continue to function, possibly in a degraded state.
action: Wait for the resilver to complete.
 scan: resilver in progress since Mon Jun 2 14:52:21 2014
 641M scanned out of 781M at 49.3M/s, 0h0m to go
 640M resilvered, 82.04% done
config:

 NAME STATE READ WRITE CKSUM
 mypool DEGRADED 0 0 0
 mirror-0 DEGRADED 0 0 0
 ada0p3 ONLINE 0 0 0
 replacing-1 UNAVAIL 0 0 0
 15732067398082357289 UNAVAIL 0 0 0 was /dev/ada1p3/old
 ada2p3 ONLINE 0 0 0 (resilvering)

errors: No known data errors
zpool status
 pool: mypool
 state: ONLINE
 scan: resilvered 781M in 0h0m with 0 errors on Mon Jun 2 14:52:38 2014
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0

errors: No known data errors
19.3.7. Scrubbing a Pool
It is recommended that pools be
	scrubbed regularly,
	ideally at least once every month. The
	scrub operation is very disk-intensive and
	will reduce performance while running. Avoid high-demand
	periods when scheduling scrub or use vfs.zfs.scrub_delay
	to adjust the relative priority of the
	scrub to prevent it interfering with other
	workloads.
zpool scrub mypool
zpool status
 pool: mypool
 state: ONLINE
 scan: scrub in progress since Wed Feb 19 20:52:54 2014
 116G scanned out of 8.60T at 649M/s, 3h48m to go
 0 repaired, 1.32% done
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 raidz2-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0
 ada3p3 ONLINE 0 0 0
 ada4p3 ONLINE 0 0 0
 ada5p3 ONLINE 0 0 0

errors: No known data errors
In the event that a scrub operation needs to be cancelled,
	issue zpool scrub -s
	 mypool.
19.3.8. Self-Healing
The checksums stored with data blocks enable the file
	system to self-heal. This feature will
	automatically repair data whose checksum does not match the
	one recorded on another device that is part of the storage
	pool. For example, a mirror with two disks where one drive is
	starting to malfunction and cannot properly store the data any
	more. This is even worse when the data has not been accessed
	for a long time, as with long term archive storage.
	Traditional file systems need to run algorithms that check and
	repair the data like fsck(8). These commands take time,
	and in severe cases, an administrator has to manually decide
	which repair operation must be performed. When
	ZFS detects a data block with a checksum
	that does not match, it tries to read the data from the mirror
	disk. If that disk can provide the correct data, it will not
	only give that data to the application requesting it, but also
	correct the wrong data on the disk that had the bad checksum.
	This happens without any interaction from a system
	administrator during normal pool operation.
The next example demonstrates this self-healing behavior.
	A mirrored pool of disks /dev/ada0 and
	/dev/ada1 is created.
zpool create healer mirror /dev/ada0 /dev/ada1
zpool status healer
 pool: healer
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 healer ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0 ONLINE 0 0 0
 ada1 ONLINE 0 0 0

errors: No known data errors
zpool list
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
healer 960M 92.5K 960M - - 0% 0% 1.00x ONLINE -
Some important data that to be protected from data errors
	using the self-healing feature is copied to the pool. A
	checksum of the pool is created for later comparison.
cp /some/important/data /healer
zfs list
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
healer 960M 67.7M 892M 7% 1.00x ONLINE -
sha1 /healer > checksum.txt
cat checksum.txt
SHA1 (/healer) = 2753eff56d77d9a536ece6694bf0a82740344d1f
Data corruption is simulated by writing random data to the
	beginning of one of the disks in the mirror. To prevent
	ZFS from healing the data as soon as it is
	detected, the pool is exported before the corruption and
	imported again afterwards.
Warning:
This is a dangerous operation that can destroy vital
	 data. It is shown here for demonstrational purposes only
	 and should not be attempted during normal operation of a
	 storage pool. Nor should this intentional corruption
	 example be run on any disk with a different file system on
	 it. Do not use any other disk device names other than the
	 ones that are part of the pool. Make certain that proper
	 backups of the pool are created before running the
	 command!

zpool export healer
dd if=/dev/random of=/dev/ada1 bs=1m count=200
200+0 records in
200+0 records out
209715200 bytes transferred in 62.992162 secs (3329227 bytes/sec)
zpool import healer
The pool status shows that one device has experienced an
	error. Note that applications reading data from the pool did
	not receive any incorrect data. ZFS
	provided data from the ada0 device with
	the correct checksums. The device with the wrong checksum can
	be found easily as the CKSUM column
	contains a nonzero value.
zpool status healer
 pool: healer
 state: ONLINE
 status: One or more devices has experienced an unrecoverable error. An
 attempt was made to correct the error. Applications are unaffected.
 action: Determine if the device needs to be replaced, and clear the errors
 using 'zpool clear' or replace the device with 'zpool replace'.
 see: http://illumos.org/msg/ZFS-8000-4J
 scan: none requested
 config:

 NAME STATE READ WRITE CKSUM
 healer ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0 ONLINE 0 0 0
 ada1 ONLINE 0 0 1

errors: No known data errors
The error was detected and handled by using the redundancy
	present in the unaffected ada0 mirror
	disk. A checksum comparison with the original one will reveal
	whether the pool is consistent again.
sha1 /healer >> checksum.txt
cat checksum.txt
SHA1 (/healer) = 2753eff56d77d9a536ece6694bf0a82740344d1f
SHA1 (/healer) = 2753eff56d77d9a536ece6694bf0a82740344d1f
The two checksums that were generated before and after the
	intentional tampering with the pool data still match. This
	shows how ZFS is capable of detecting and
	correcting any errors automatically when the checksums differ.
	Note that this is only possible when there is enough
	redundancy present in the pool. A pool consisting of a single
	device has no self-healing capabilities. That is also the
	reason why checksums are so important in
	ZFS and should not be disabled for any
	reason. No fsck(8) or similar file system consistency
	check program is required to detect and correct this and the
	pool was still available during the time there was a problem.
	A scrub operation is now required to overwrite the corrupted
	data on ada1.
zpool scrub healer
zpool status healer
 pool: healer
 state: ONLINE
status: One or more devices has experienced an unrecoverable error. An
 attempt was made to correct the error. Applications are unaffected.
action: Determine if the device needs to be replaced, and clear the errors
 using 'zpool clear' or replace the device with 'zpool replace'.
 see: http://illumos.org/msg/ZFS-8000-4J
 scan: scrub in progress since Mon Dec 10 12:23:30 2012
 10.4M scanned out of 67.0M at 267K/s, 0h3m to go
 9.63M repaired, 15.56% done
config:

 NAME STATE READ WRITE CKSUM
 healer ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0 ONLINE 0 0 0
 ada1 ONLINE 0 0 627 (repairing)

errors: No known data errors
The scrub operation reads data from
	ada0 and rewrites any data with an
	incorrect checksum on ada1. This is
	indicated by the (repairing) output from
	zpool status. After the operation is
	complete, the pool status changes to:
zpool status healer
 pool: healer
 state: ONLINE
status: One or more devices has experienced an unrecoverable error. An
 attempt was made to correct the error. Applications are unaffected.
action: Determine if the device needs to be replaced, and clear the errors
 using 'zpool clear' or replace the device with 'zpool replace'.
 see: http://illumos.org/msg/ZFS-8000-4J
 scan: scrub repaired 66.5M in 0h2m with 0 errors on Mon Dec 10 12:26:25 2012
config:

 NAME STATE READ WRITE CKSUM
 healer ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0 ONLINE 0 0 0
 ada1 ONLINE 0 0 2.72K

errors: No known data errors
After the scrub operation completes and all the data
	has been synchronized from ada0 to
	ada1, the error messages can be
	cleared from the pool
	status by running zpool clear.
zpool clear healer
zpool status healer
 pool: healer
 state: ONLINE
 scan: scrub repaired 66.5M in 0h2m with 0 errors on Mon Dec 10 12:26:25 2012
config:

 NAME STATE READ WRITE CKSUM
 healer ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0 ONLINE 0 0 0
 ada1 ONLINE 0 0 0

errors: No known data errors
The pool is now back to a fully working state and all the
	errors have been cleared.
19.3.9. Growing a Pool
The usable size of a redundant pool is limited by the
	capacity of the smallest device in each vdev. The smallest
	device can be replaced with a larger device. After completing
	a replace or
	resilver operation,
	the pool can grow to use the capacity of the new device. For
	example, consider a mirror of a 1 TB drive and a
	2 TB drive. The usable space is 1 TB. When the
	1 TB drive is replaced with another 2 TB drive, the
	resilvering process copies the existing data onto the new
	drive. Because
	both of the devices now have 2 TB capacity, the mirror's
	available space can be grown to 2 TB.
Expansion is triggered by using
	zpool online -e on each device. After
	expansion of all devices, the additional space becomes
	available to the pool.
19.3.10. Importing and Exporting Pools
Pools are exported before moving them
	to another system. All datasets are unmounted, and each
	device is marked as exported but still locked so it cannot be
	used by other disk subsystems. This allows pools to be
	imported on other machines, other
	operating systems that support ZFS, and
	even different hardware architectures (with some caveats, see
	zpool(8)). When a dataset has open files,
	zpool export -f can be used to force the
	export of a pool. Use this with caution. The datasets are
	forcibly unmounted, potentially resulting in unexpected
	behavior by the applications which had open files on those
	datasets.
Export a pool that is not in use:
zpool export mypool
Importing a pool automatically mounts the datasets. This
	may not be the desired behavior, and can be prevented with
	zpool import -N.
	zpool import -o sets temporary properties
	for this import only.
	zpool import altroot= allows importing a
	pool with a base mount point instead of the root of the file
	system. If the pool was last used on a different system and
	was not properly exported, an import might have to be forced
	with zpool import -f.
	zpool import -a imports all pools that do
	not appear to be in use by another system.
List all available pools for import:
zpool import
 pool: mypool
 id: 9930174748043525076
 state: ONLINE
 action: The pool can be imported using its name or numeric identifier.
 config:

 mypool ONLINE
 ada2p3 ONLINE
Import the pool with an alternative root directory:
zpool import -o altroot=/mnt mypool
zfs list
zfs list
NAME USED AVAIL REFER MOUNTPOINT
mypool 110K 47.0G 31K /mnt/mypool
19.3.11. Upgrading a Storage Pool
After upgrading FreeBSD, or if a pool has been imported from
	a system using an older version of ZFS, the
	pool can be manually upgraded to the latest version of
	ZFS to support newer features. Consider
	whether the pool may ever need to be imported on an older
	system before upgrading. Upgrading is a one-way process.
	Older pools can be upgraded, but pools with newer features
	cannot be downgraded.
Upgrade a v28 pool to support
	Feature Flags:
zpool status
 pool: mypool
 state: ONLINE
status: The pool is formatted using a legacy on-disk format. The pool can
 still be used, but some features are unavailable.
action: Upgrade the pool using 'zpool upgrade'. Once this is done, the
 pool will no longer be accessible on software that does not support feat
 flags.
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
	 ada0 ONLINE 0 0 0
	 ada1 ONLINE 0 0 0

errors: No known data errors
zpool upgrade
This system supports ZFS pool feature flags.

The following pools are formatted with legacy version numbers and can
be upgraded to use feature flags. After being upgraded, these pools
will no longer be accessible by software that does not support feature
flags.

VER POOL
--- ------------
28 mypool

Use 'zpool upgrade -v' for a list of available legacy versions.
Every feature flags pool has all supported features enabled.
zpool upgrade mypool
This system supports ZFS pool feature flags.

Successfully upgraded 'mypool' from version 28 to feature flags.
Enabled the following features on 'mypool':
 async_destroy
 empty_bpobj
 lz4_compress
 multi_vdev_crash_dump
The newer features of ZFS will not be
	available until zpool upgrade has
	completed. zpool upgrade -v can be used to
	see what new features will be provided by upgrading, as well
	as which features are already supported.
Upgrade a pool to support additional feature flags:
zpool status
 pool: mypool
 state: ONLINE
status: Some supported features are not enabled on the pool. The pool can
 still be used, but some features are unavailable.
action: Enable all features using 'zpool upgrade'. Once this is done,
 the pool may no longer be accessible by software that does not support
 the features. See zpool-features(7) for details.
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
	 ada0 ONLINE 0 0 0
	 ada1 ONLINE 0 0 0

errors: No known data errors
zpool upgrade
This system supports ZFS pool feature flags.

All pools are formatted using feature flags.

Some supported features are not enabled on the following pools. Once a
feature is enabled the pool may become incompatible with software
that does not support the feature. See zpool-features(7) for details.

POOL FEATURE

zstore
 multi_vdev_crash_dump
 spacemap_histogram
 enabled_txg
 hole_birth
 extensible_dataset
 bookmarks
 filesystem_limits
zpool upgrade mypool
This system supports ZFS pool feature flags.

Enabled the following features on 'mypool':
 spacemap_histogram
 enabled_txg
 hole_birth
 extensible_dataset
 bookmarks
 filesystem_limits
Warning:
The boot code on systems that boot from a pool must be
	 updated to support the new pool version. Use
	 gpart bootcode on the partition that
	 contains the boot code. There are two types of bootcode
	 available, depending on way the system boots:
	 GPT (the most common option) and
	 EFI (for more modern systems).
For legacy boot using GPT, use the following
	 command:
gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada1
For systems using EFI to boot, execute the following
	 command:
gpart bootcode -p /boot/boot1.efifat -i 1 ada1
Apply the bootcode to all bootable disks in the pool.
	 See gpart(8) for more information.

19.3.12. Displaying Recorded Pool History
Commands that modify the pool are recorded. Recorded
	actions include the creation of datasets, changing properties,
	or replacement of a disk. This history is useful for
	reviewing how a pool was created and which user performed a
	specific action and when. History is not kept in a log file,
	but is part of the pool itself. The command to review this
	history is aptly named
	zpool history:
zpool history
History for 'tank':
2013-02-26.23:02:35 zpool create tank mirror /dev/ada0 /dev/ada1
2013-02-27.18:50:58 zfs set atime=off tank
2013-02-27.18:51:09 zfs set checksum=fletcher4 tank
2013-02-27.18:51:18 zfs create tank/backup
The output shows zpool and
	zfs commands that were executed on the pool
	along with a timestamp. Only commands that alter the pool in
	some way are recorded. Commands like
	zfs list are not included. When no pool
	name is specified, the history of all pools is
	displayed.
zpool history can show even more
	information when the options -i or
	-l are provided. -i
	displays user-initiated events as well as internally logged
	ZFS events.
zpool history -i
History for 'tank':
2013-02-26.23:02:35 [internal pool create txg:5] pool spa 28; zfs spa 28; zpl 5;uts 9.1-RELEASE 901000 amd64
2013-02-27.18:50:53 [internal property set txg:50] atime=0 dataset = 21
2013-02-27.18:50:58 zfs set atime=off tank
2013-02-27.18:51:04 [internal property set txg:53] checksum=7 dataset = 21
2013-02-27.18:51:09 zfs set checksum=fletcher4 tank
2013-02-27.18:51:13 [internal create txg:55] dataset = 39
2013-02-27.18:51:18 zfs create tank/backup
More details can be shown by adding -l.
	History records are shown in a long format, including
	information like the name of the user who issued the command
	and the hostname on which the change was made.
zpool history -l
History for 'tank':
2013-02-26.23:02:35 zpool create tank mirror /dev/ada0 /dev/ada1 [user 0 (root) on :global]
2013-02-27.18:50:58 zfs set atime=off tank [user 0 (root) on myzfsbox:global]
2013-02-27.18:51:09 zfs set checksum=fletcher4 tank [user 0 (root) on myzfsbox:global]
2013-02-27.18:51:18 zfs create tank/backup [user 0 (root) on myzfsbox:global]
The output shows that the
	root user created
	the mirrored pool with disks
	/dev/ada0 and
	/dev/ada1. The hostname
	myzfsbox is also
	shown in the commands after the pool's creation. The hostname
	display becomes important when the pool is exported from one
	system and imported on another. The commands that are issued
	on the other system can clearly be distinguished by the
	hostname that is recorded for each command.
Both options to zpool history can be
	combined to give the most detailed information possible for
	any given pool. Pool history provides valuable information
	when tracking down the actions that were performed or when
	more detailed output is needed for debugging.
19.3.13. Performance Monitoring
A built-in monitoring system can display pool
	I/O statistics in real time. It shows the
	amount of free and used space on the pool, how many read and
	write operations are being performed per second, and how much
	I/O bandwidth is currently being utilized.
	By default, all pools in the system are monitored and
	displayed. A pool name can be provided to limit monitoring to
	just that pool. A basic example:
zpool iostat
 capacity operations bandwidth
pool alloc free read write read write
---------- ----- ----- ----- ----- ----- -----
data 288G 1.53T 2 11 11.3K 57.1K
To continuously monitor I/O activity, a
	number can be specified as the last parameter, indicating a
	interval in seconds to wait between updates. The next
	statistic line is printed after each interval. Press
	Ctrl+C to stop this continuous monitoring.
	Alternatively, give a second number on the command line after
	the interval to specify the total number of statistics to
	display.
Even more detailed I/O statistics can
	be displayed with -v. Each device in the
	pool is shown with a statistics line. This is useful in
	seeing how many read and write operations are being performed
	on each device, and can help determine if any individual
	device is slowing down the pool. This example shows a
	mirrored pool with two devices:
zpool iostat -v
 capacity operations bandwidth
pool alloc free read write read write
----------------------- ----- ----- ----- ----- ----- -----
data 288G 1.53T 2 12 9.23K 61.5K
 mirror 288G 1.53T 2 12 9.23K 61.5K
 ada1 - - 0 4 5.61K 61.7K
 ada2 - - 1 4 5.04K 61.7K
----------------------- ----- ----- ----- ----- ----- -----
19.3.14. Splitting a Storage Pool
A pool consisting of one or more mirror vdevs can be split
	into two pools. Unless otherwise specified, the last member
	of each mirror is detached and used to create a new pool
	containing the same data. The operation should first be
	attempted with -n. The details of the
	proposed operation are displayed without it actually being
	performed. This helps confirm that the operation will do what
	the user intends.
3.12. Manual Pages
The most comprehensive documentation on FreeBSD is in the form
 of manual pages. Nearly every program on the system comes with
 a short reference manual explaining the basic operation and
 available arguments. These manuals can be viewed using
 man:
% man command
where command is the name of the
 command to learn about. For example, to learn more about
 ls(1), type:
% man ls
Manual pages are divided into sections which represent the
 type of topic. In FreeBSD, the following sections are
 available:
	User commands.

	System calls and error numbers.

	Functions in the C libraries.

	Device drivers.

	File formats.

	Games and other diversions.

	Miscellaneous information.

	System maintenance and operation commands.

	System kernel interfaces.

In some cases, the same topic may appear in more than one
 section of the online manual. For example, there is a
 chmod user command and a
 chmod() system call. To tell man(1)
 which section to display, specify the section number:
% man 1 chmod
This will display the manual page for the user command
 chmod(1). References to a particular section of the
 online manual are traditionally placed in parenthesis in
 written documentation, so chmod(1) refers to the user
 command and chmod(2) refers to the system call.
If the name of the manual page is unknown, use man
	-k to search for keywords in the manual page
 descriptions:
% man -k mail
This command displays a list of commands that have the
 keyword “mail” in their descriptions. This is
 equivalent to using apropos(1).
To read the descriptions for all of the commands in
 /usr/bin, type:
% cd /usr/bin
% man -f * | more
or
% cd /usr/bin
% whatis * |more
3.12.1. GNU Info Files
FreeBSD includes several applications and utilities produced
	by the Free Software Foundation (FSF). In addition to manual
	pages, these programs may include hypertext documents called
	info files. These can be viewed using
	info(1) or, if editors/emacs is
	installed, the info mode of
	emacs.
To use info(1), type:
% info
For a brief introduction, type h. For
	a quick command reference, type ?.
FreeBSD Handbook
Table of Contents
	Preface
	I. Getting Started	1. Introduction	1.1. Synopsis
	1.2. Welcome to FreeBSD!	1.2.1. What Can FreeBSD Do?
	1.2.2. Who Uses FreeBSD?

	1.3. About the FreeBSD Project	1.3.1. A Brief History of FreeBSD
	1.3.2. FreeBSD Project Goals
	1.3.3. The FreeBSD Development Model
	1.3.4. Third Party Programs
	1.3.5. Additional Documentation

	2. Installing FreeBSD	2.1. Synopsis
	2.2. Minimum Hardware Requirements
	2.3. Pre-Installation Tasks	2.3.1. Prepare the Installation Media	2.3.1.1. Writing an Image File to USB

	2.4. Starting the Installation	2.4.1. Booting on i386™ and amd64
	2.4.2. Booting on PowerPC®
	2.4.3. FreeBSD Boot Menu

	2.5. Using bsdinstall	2.5.1. Selecting the Keymap Menu
	2.5.2. Setting the Hostname
	2.5.3. Selecting Components to Install
	2.5.4. Installing from the Network

	2.6. Allocating Disk Space	2.6.1. Designing the Partition Layout
	2.6.2. Guided Partitioning Using UFS
	2.6.3. Manual Partitioning
	2.6.4. Guided Partitioning Using Root-on-ZFS
	2.6.5. Shell Mode Partitioning

	2.7. Fetching Distribution Files
	2.8. Accounts, Time Zone, Services and Hardening	2.8.1. Setting the
	root
	Password
	2.8.2. Setting the Time Zone
	2.8.3. Enabling Services
	2.8.4. Enabling Hardening Security Options
	2.8.5. Add Users
	2.8.6. Final Configuration

	2.9. Network Interfaces	2.9.1. Configuring Network Interfaces

	2.10. Troubleshooting
	2.11. Using the Live CD

	3. FreeBSD Basics	3.1. Synopsis
	3.2. Virtual Consoles and Terminals	3.2.1. Virtual Consoles
	3.2.2. Single User Mode
	3.2.3. Changing Console Video Modes

	3.3. Users and Basic Account Management	3.3.1. Account Types	3.3.1.1. System Accounts
	3.3.1.2. User Accounts
	3.3.1.3. The Superuser Account

	3.3.2. Managing Accounts	3.3.2.1. adduser
	3.3.2.2. rmuser
	3.3.2.3. chpass
	3.3.2.4. passwd
	3.3.2.5. pw

	3.3.3. Managing Groups

	3.4. Permissions	3.4.1. Symbolic Permissions
	3.4.2. FreeBSD File Flags
	3.4.3. The setuid,
	 setgid, and sticky
	 Permissions

	3.5. Directory Structure
	3.6. Disk Organization
	3.7. Mounting and Unmounting File Systems	3.7.1. The fstab File
	3.7.2. Using mount(8)
	3.7.3. Using umount(8)

	3.8. Processes and Daemons	3.8.1. Viewing Processes
	3.8.2. Killing Processes

	3.9. Shells	3.9.1. Changing the Shell
	3.9.2. Advanced Shell Techniques

	3.10. Text Editors
	3.11. Devices and Device Nodes
	3.12. Manual Pages	3.12.1. GNU Info Files

	4. Installing Applications: Packages and Ports	4.1. Synopsis
	4.2. Overview of Software Installation
	4.3. Finding Software
	4.4. Using pkg for Binary Package
 Management	4.4.1. Getting Started with
	pkg
	4.4.2. Quarterly and Latest Ports Branches
	4.4.3. Obtaining Information About Installed Packages
	4.4.4. Installing and Removing Packages
	4.4.5. Upgrading Installed Packages
	4.4.6. Auditing Installed Packages
	4.4.7. Automatically Removing Unused Packages
	4.4.8. Restoring the Package Database
	4.4.9. Removing Stale Packages
	4.4.10. Modifying Package Metadata

	4.5. Using the Ports Collection	4.5.1. Installing Ports	4.5.1.1. Customizing Ports Installation

	4.5.2. Removing Installed Ports
	4.5.3. Upgrading Ports	4.5.3.1. Tools to Upgrade and Manage Ports
	4.5.3.2. Upgrading Ports Using
	 Portmaster
	4.5.3.3. Upgrading Ports Using Portupgrade

	4.5.4. Ports and Disk Space

	4.6. Building Packages with
 Poudriere	4.6.1. Initialize Jails and Port Trees
	4.6.2. Configuring pkg Clients to Use a Poudriere
	Repository

	4.7. Post-Installation Considerations
	4.8. Dealing with Broken Ports

	5. The X Window System	5.1. Synopsis
	5.2. Terminology
	5.3. Installing Xorg
	5.4. Xorg Configuration	5.4.1. Quick Start
	5.4.2. User Group for Accelerated Video
	5.4.3. Kernel Mode Setting (KMS)
	5.4.4. Configuration Files	5.4.4.1. Directory
	5.4.4.2. Single or Multiple Files

	5.4.5. Video Cards
	5.4.6. Monitors
	5.4.7. Input Devices	5.4.7.1. Keyboards
	5.4.7.2. Mice and Pointing Devices

	5.4.8. Manual Configuration

	5.5. Using Fonts in Xorg	5.5.1. Type1 Fonts
	5.5.2. TrueType® Fonts
	5.5.3. Anti-Aliased Fonts

	5.6. The X Display Manager	5.6.1. Configuring XDM
	5.6.2. Configuring Remote Access

	5.7. Desktop Environments	5.7.1. GNOME
	5.7.2. KDE
	5.7.3. Xfce

	5.8. Installing Compiz Fusion	5.8.1. Setting up the FreeBSD nVidia Driver
	5.8.2. Configuring xorg.conf for Desktop Effects
	5.8.3. Installing and Configuring Compiz Fusion

	5.9. Troubleshooting	5.9.1. Configuration with Intel® i810
	 Graphics Chipsets
	5.9.2. Adding a Widescreen Flatpanel to the Mix
	5.9.3. Troubleshooting Compiz Fusion

	II. Common Tasks	6. Desktop Applications	6.1. Synopsis
	6.2. Browsers	6.2.1. Firefox
	6.2.2. Konqueror
	6.2.3. Chromium

	6.3. Productivity	6.3.1. Calligra
	6.3.2. AbiWord
	6.3.3. The GIMP
	6.3.4. Apache OpenOffice
	6.3.5. LibreOffice

	6.4. Document Viewers	6.4.1. Xpdf
	6.4.2. gv
	6.4.3. Geeqie
	6.4.4. ePDFView
	6.4.5. Okular

	6.5. Finance	6.5.1. GnuCash
	6.5.2. Gnumeric
	6.5.3. KMyMoney

	7. Multimedia	7.1. Synopsis
	7.2. Setting Up the Sound Card	7.2.1. Configuring a Custom Kernel with Sound Support
	7.2.2. Testing Sound
	7.2.3. Setting up Bluetooth Sound Devices
	7.2.4. Troubleshooting Sound
	7.2.5. Utilizing Multiple Sound Sources
	7.2.6. Setting Default Values for Mixer Channels

	7.3. MP3 Audio	7.3.1. MP3 Players
	7.3.2. Ripping CD Audio Tracks
	7.3.3. Encoding and Decoding MP3s

	7.4. Video Playback	7.4.1. Determining Video Capabilities	7.4.1.1. XVideo

	7.4.2. Ports and Packages Dealing with Video	7.4.2.1. MPlayer and
	 MEncoder
	7.4.2.2. The xine Video
	 Player
	7.4.2.3. The Transcode
	 Utilities

	7.5. TV Cards	7.5.1. Loading the Driver
	7.5.2. Useful Applications
	7.5.3. Troubleshooting

	7.6. MythTV	7.6.1. Hardware
	7.6.2. Setting up the MythTV Backend

	7.7. Image Scanners	7.7.1. Checking the Scanner
	7.7.2. SANE Configuration
	7.7.3. Scanner Permissions

	8. Configuring the FreeBSD Kernel	8.1. Synopsis
	8.2. Why Build a Custom Kernel?
	8.3. Finding the System Hardware
	8.4. The Configuration File
	8.5. Building and Installing a Custom Kernel
	8.6. If Something Goes Wrong

	9. Printing	9.1. Quick Start
	9.2. Printer Connections	9.2.1. Summary

	9.3. Common Page Description Languages	9.3.1. Converting PostScript® to Other
	PDLs
	9.3.2. Summary

	9.4. Direct Printing
	9.5. LPD (Line Printer Daemon)	9.5.1. Initial Setup
	9.5.2. Printing with lpr(1)
	9.5.3. Filters	9.5.3.1. Preventing Stairstepping on Plain Text Printers
	9.5.3.2. Fancy Plain Text on PostScript® Printers with
	 print/enscript
	9.5.3.3. Printing PostScript® to
	 PCL Printers
	9.5.3.4. Smart Filters
	9.5.3.5. Other Smart Filters

	9.5.4. Multiple Queues
	9.5.5. Monitoring and Controlling Printing	9.5.5.1. lpq(1)
	9.5.5.2. lprm(1)
	9.5.5.3. lpc(8)

	9.5.6. Shared Printers	9.5.6.1. Aliases
	9.5.6.2. Header Pages

	9.5.7. References

	9.6. Other Printing Systems	9.6.1. CUPS (Common UNIX® Printing
	System)
	9.6.2. HPLIP
	9.6.3. LPRng

	10. Linux® Binary Compatibility	10.1. Synopsis
	10.2. Configuring Linux® Binary Compatibility	10.2.1. Installing Additional Libraries Manually
	10.2.2. Installing Linux® ELF
	Binaries
	10.2.3. Installing a Linux® RPM Based
	Application
	10.2.4. Configuring the Hostname Resolver

	10.3. Advanced Topics

	III. System Administration	11. Configuration and Tuning	11.1. Synopsis
	11.2. Starting Services	11.2.1. Extended Application Configuration
	11.2.2. Using Services to Start Services

	11.3. Configuring cron(8)	11.3.1. Creating a User Crontab

	11.4. Managing Services in FreeBSD	11.4.1. Managing System-Specific Configuration

	11.5. Setting Up Network Interface Cards	11.5.1. Locating the Correct Driver	11.5.1.1. Using Windows® NDIS Drivers

	11.5.2. Configuring the Network Card
	11.5.3. Testing and Troubleshooting	11.5.3.1. Testing the Ethernet Card
	11.5.3.2. Troubleshooting

	11.6. Virtual Hosts
	11.7. Configuring System Logging	11.7.1. Configuring Local Logging
	11.7.2. Log Management and Rotation
	11.7.3. Configuring Remote Logging	11.7.3.1. Log Server Configuration
	11.7.3.2. Log Client Configuration
	11.7.3.3. Debugging Log Servers
	11.7.3.4. Security Considerations

	11.8. Configuration Files	11.8.1. /etc
	Layout
	11.8.2. Hostnames	11.8.2.1. /etc/resolv.conf
	11.8.2.2. /etc/hosts

	11.9. Tuning with sysctl(8)	11.9.1. sysctl.conf
	11.9.2. sysctl(8) Read-only

	11.10. Tuning Disks	11.10.1. Sysctl Variables	11.10.1.1. vfs.vmiodirenable
	11.10.1.2. vfs.write_behind
	11.10.1.3. vfs.hirunningspace
	11.10.1.4. vm.swap_idle_enabled
	11.10.1.5. hw.ata.wc
	11.10.1.6. SCSI_DELAY
	 (kern.cam.scsi_delay)

	11.10.2. Soft Updates	11.10.2.1. More Details About Soft Updates

	11.11. Tuning Kernel Limits	11.11.1. File/Process Limits	11.11.1.1. kern.maxfiles
	11.11.1.2. kern.ipc.soacceptqueue

	11.11.2. Network Limits	11.11.2.1. net.inet.ip.portrange.*
	11.11.2.2. TCP Bandwidth Delay Product

	11.11.3. Virtual Memory	11.11.3.1. kern.maxvnodes

	11.12. Adding Swap Space	11.12.1. Swap on a New Hard Drive or Existing Partition
	11.12.2. Creating a Swap File

	11.13. Power and Resource Management	11.13.1. Configuring ACPI
	11.13.2. Common Problems	11.13.2.1. Mouse Issues
	11.13.2.2. Suspend/Resume
	11.13.2.3. System Hangs
	11.13.2.4. Panics
	11.13.2.5. System Powers Up After Suspend or Shutdown
	11.13.2.6. BIOS Contains Buggy Bytecode

	11.13.3. Overriding the Default AML
	11.13.4. Getting and Submitting Debugging Info
	11.13.5. References

	12. The FreeBSD Booting Process	12.1. Synopsis
	12.2. FreeBSD Boot Process	12.2.1. The Boot Manager
	12.2.2. Stage One and Stage Two
	12.2.3. Stage Three
	12.2.4. Last Stage	12.2.4.1. Single-User Mode
	12.2.4.2. Multi-User Mode

	12.3. Configuring Boot Time Splash Screens
	12.4. Device Hints
	12.5. Shutdown Sequence

	13. Security	13.1. Synopsis
	13.2. Introduction	13.2.1. Preventing Logins
	13.2.2. Permitted Account Escalation
	13.2.3. Password Hashes
	13.2.4. Password Policy Enforcement
	13.2.5. Detecting Rootkits
	13.2.6. Binary Verification
	13.2.7. System Tuning for Security

	13.3. One-time Passwords	13.3.1. Initializing OPIE
	13.3.2. Insecure Connection Initialization
	13.3.3. Generating a Single One-time Password
	13.3.4. Generating Multiple One-time Passwords
	13.3.5. Restricting Use of UNIX® Passwords

	13.4. TCP Wrapper	13.4.1. Initial Configuration
	13.4.2. Advanced Configuration

	13.5. Kerberos	13.5.1. Setting up a Heimdal KDC
	13.5.2. Configuring a Server to Use
	Kerberos
	13.5.3. Configuring a Client to Use
	Kerberos
	13.5.4. MIT Differences
	13.5.5. Kerberos Tips, Tricks, and
	Troubleshooting
	13.5.6. Mitigating Kerberos
	Limitations
	13.5.7. Resources and Further Information

	13.6. OpenSSL	13.6.1. Generating Certificates
	13.6.2. Using Certificates

	13.7. VPN over
	IPsec	13.7.1. Configuring a VPN on FreeBSD

	13.8. OpenSSH	13.8.1. Using the SSH Client Utilities	13.8.1.1. Key-based Authentication
	13.8.1.2. SSH Tunneling

	13.8.2. Enabling the SSH Server
	13.8.3. SSH Server Security

	13.9. Access Control Lists	13.9.1. Enabling ACL Support
	13.9.2. Using ACLs

	13.10. Monitoring Third Party Security Issues
	13.11. FreeBSD Security Advisories	13.11.1. Format of a Security Advisory

	13.12. Process Accounting	13.12.1. Enabling and Utilizing Process Accounting

	13.13. Resource Limits	13.13.1. Configuring Login Classes
	13.13.2. Enabling and Configuring Resource Limits

	13.14. Shared Administration with Sudo	13.14.1. Logging Output

	14. Jails	14.1. Synopsis
	14.2. Terms Related to Jails
	14.3. Creating and Controlling Jails	14.3.1. Installing a Jail	14.3.1.1. To install a Jail from the Internet
	14.3.1.2. To install a Jail from an ISO
	14.3.1.3. To build and install a Jail from source

	14.3.2. Configuring the Host

	14.4. Fine Tuning and Administration	14.4.1. System Tools for Jail Tuning in FreeBSD
	14.4.2. High-Level Administrative Tools in the FreeBSD Ports
	Collection
	14.4.3. Keeping Jails Patched and up to Date

	14.5. Updating Multiple Jails	14.5.1. Creating the Template
	14.5.2. Creating Jails
	14.5.3. Upgrading

	14.6. Managing Jails with
	ezjail	14.6.1. Installing ezjail
	14.6.2. Initial Setup
	14.6.3. Creating and Starting a New Jail
	14.6.4. Updating Jails	14.6.4.1. Updating the Operating System
	14.6.4.2. Updating Ports

	14.6.5. Controlling Jails	14.6.5.1. Stopping and Starting Jails
	14.6.5.2. Archiving and Restoring Jails

	14.6.6. Full Example: BIND in a
	Jail

	15. Mandatory Access Control	15.1. Synopsis
	15.2. Key Terms
	15.3. Understanding MAC Labels	15.3.1. Label Configuration
	15.3.2. Predefined Labels
	15.3.3. Numeric Labels
	15.3.4. User Labels
	15.3.5. Network Interface Labels

	15.4. Planning the Security Configuration
	15.5. Available MAC Policies	15.5.1. The MAC See Other UIDs Policy
	15.5.2. The MAC BSD Extended Policy
	15.5.3. The MAC Interface Silencing Policy
	15.5.4. The MAC Port Access Control List Policy
	15.5.5. The MAC Partition Policy
	15.5.6. The MAC Multi-Level Security Module
	15.5.7. The MAC Biba Module
	15.5.8. The MAC Low-watermark Module

	15.6. User Lock Down
	15.7. Nagios in a MAC Jail	15.7.1. Create an Insecure User Class
	15.7.2. Configure Users
	15.7.3. Create the Contexts File
	15.7.4. Loader Configuration
	15.7.5. Testing the Configuration

	15.8. Troubleshooting the MAC Framework

	16. Security Event Auditing	16.1. Synopsis
	16.2. Key Terms
	16.3. Audit Configuration	16.3.1. Event Selection Expressions
	16.3.2. Configuration Files	16.3.2.1. The audit_control File
	16.3.2.2. The audit_user File

	16.4. Working with Audit Trails	16.4.1. Live Monitoring Using Audit Pipes
	16.4.2. Rotating and Compressing Audit Trail Files

	17. Storage	17.1. Synopsis
	17.2. Adding Disks
	17.3. Resizing and Growing Disks
	17.4. USB Storage Devices	17.4.1. Device Configuration
	17.4.2. Automounting Removable Media

	17.5. Creating and Using CD Media	17.5.1. Supported Devices
	17.5.2. Burning a CD
	17.5.3. Writing Data to an ISO File
	System
	17.5.4. Using Data CDs
	17.5.5. Duplicating Audio CDs

	17.6. Creating and Using DVD Media	17.6.1. Configuration
	17.6.2. Burning Data DVDs
	17.6.3. Burning a DVD-Video
	17.6.4. Using a DVD+RW
	17.6.5. Using a DVD-RW
	17.6.6. Multi-Session
	17.6.7. For More Information
	17.6.8. Using a DVD-RAM

	17.7. Creating and Using Floppy Disks
	17.8. Backup Basics	17.8.1. File System Backups
	17.8.2. Directory Backups
	17.8.3. Using Data Tapes for Backups
	17.8.4. Third-Party Backup Utilities
	17.8.5. Emergency Recovery

	17.9. Memory Disks	17.9.1. Attaching and Detaching Existing Images
	17.9.2. Creating a File- or Memory-Backed Memory Disk

	17.10. File System Snapshots
	17.11. Disk Quotas	17.11.1. Enabling Disk Quotas
	17.11.2. Setting Quota Limits
	17.11.3. Checking Quota Limits and Disk Usage
	17.11.4. Quotas over NFS

	17.12. Encrypting Disk Partitions	17.12.1. Disk Encryption with
	gbde
	17.12.2. Disk Encryption with geli

	17.13. Encrypting Swap	17.13.1. Configuring Encrypted Swap
	17.13.2. Encrypted Swap Verification

	17.14. Highly Available Storage
	(HAST)	17.14.1. HAST Operation
	17.14.2. HAST Configuration	17.14.2.1. Failover Configuration

	17.14.3. Troubleshooting	17.14.3.1. Recovering from the Split-brain Condition

	18. GEOM: Modular Disk Transformation Framework	18.1. Synopsis
	18.2. RAID0 - Striping
	18.3. RAID1 - Mirroring	18.3.1. Metadata Issues
	18.3.2. Creating a Mirror with Two New Disks
	18.3.3. Creating a Mirror with an Existing Drive
	18.3.4. Troubleshooting
	18.3.5. Recovering from Disk Failure

	18.4. RAID3 - Byte-level Striping with
	Dedicated Parity	18.4.1. Creating a Dedicated RAID3
	Array

	18.5. Software RAID Devices	18.5.1. Creating an Array
	18.5.2. Multiple Volumes
	18.5.3. Converting a Single Drive to a Mirror
	18.5.4. Inserting New Drives into the Array
	18.5.5. Removing Drives from the Array
	18.5.6. Stopping the Array
	18.5.7. Checking Array Status
	18.5.8. Deleting Arrays
	18.5.9. Deleting Unexpected Arrays

	18.6. GEOM Gate Network
	18.7. Labeling Disk Devices	18.7.1. Label Types and Examples

	18.8. UFS Journaling Through GEOM

	19. The Z File System (ZFS)	19.1. What Makes ZFS Different
	19.2. Quick Start Guide	19.2.1. Single Disk Pool
	19.2.2. RAID-Z
	19.2.3. Recovering RAID-Z
	19.2.4. Data Verification

	19.3. zpool Administration	19.3.1. Creating and Destroying Storage Pools
	19.3.2. Adding and Removing Devices
	19.3.3. Checking the Status of a Pool
	19.3.4. Clearing Errors
	19.3.5. Replacing a Functioning Device
	19.3.6. Dealing with Failed Devices
	19.3.7. Scrubbing a Pool
	19.3.8. Self-Healing
	19.3.9. Growing a Pool
	19.3.10. Importing and Exporting Pools
	19.3.11. Upgrading a Storage Pool
	19.3.12. Displaying Recorded Pool History
	19.3.13. Performance Monitoring
	19.3.14. Splitting a Storage Pool

	19.4. zfs Administration	19.4.1. Creating and Destroying Datasets
	19.4.2. Creating and Destroying Volumes
	19.4.3. Renaming a Dataset
	19.4.4. Setting Dataset Properties	19.4.4.1. Getting and Setting Share Properties

	19.4.5. Managing Snapshots	19.4.5.1. Creating Snapshots
	19.4.5.2. Comparing Snapshots
	19.4.5.3. Snapshot Rollback
	19.4.5.4. Restoring Individual Files from Snapshots

	19.4.6. Managing Clones
	19.4.7. Replication	19.4.7.1. Incremental Backups
	19.4.7.2. Sending Encrypted Backups over
	 SSH

	19.4.8. Dataset, User, and Group Quotas
	19.4.9. Reservations
	19.4.10. Compression
	19.4.11. Deduplication
	19.4.12. ZFS and Jails

	19.5. Delegated Administration	19.5.1. Delegating Dataset Creation
	19.5.2. Delegating Permission Delegation

	19.6. Advanced Topics	19.6.1. Tuning
	19.6.2. ZFS on i386	19.6.2.1. Memory
	19.6.2.2. Kernel Configuration
	19.6.2.3. Loader Tunables

	19.7. Additional Resources
	19.8. ZFS Features and Terminology

	20. Other File Systems	20.1. Synopsis
	20.2. Linux® File Systems	20.2.1. ext2

	21. Virtualization	21.1. Synopsis
	21.2. FreeBSD as a Guest on Parallels for
 Mac OS® X	21.2.1. Installing FreeBSD on Parallels/Mac OS® X
	21.2.2. Configuring FreeBSD on
	Parallels

	21.3. FreeBSD as a Guest on Virtual PC
 for Windows®	21.3.1. Installing FreeBSD on
	Virtual PC
	21.3.2. Configuring FreeBSD on Virtual
	 PC

	21.4. FreeBSD as a Guest on VMware Fusion
 for Mac OS®	21.4.1. Installing FreeBSD on
	VMware Fusion
	21.4.2. Configuring FreeBSD on VMware
	 Fusion

	21.5. FreeBSD as a Guest on VirtualBox™
	21.6. FreeBSD as a Host with VirtualBox™	21.6.1. Installing VirtualBox™
	21.6.2. VirtualBox™ USB Support
	21.6.3. VirtualBox™ Host
	DVD/CD Access

	21.7. FreeBSD as a Host with
 bhyve	21.7.1. Preparing the Host
	21.7.2. Creating a FreeBSD Guest
	21.7.3. Creating a Linux® Guest
	21.7.4. Booting bhyve Virtual Machines
	with UEFI Firmware
	21.7.5. Graphical UEFI Framebuffer for
	bhyve Guests
	21.7.6. Using ZFS with
	bhyve Guests
	21.7.7. Virtual Machine Consoles
	21.7.8. Managing Virtual Machines
	21.7.9. Persistent Configuration

	21.8. FreeBSD as a Xen™-Host	21.8.1. Hardware Requirements for Xen™ Dom0
	21.8.2. Xen™ Dom0 Control Domain Setup
	21.8.3. Xen™ DomU Guest VM Configuration
	21.8.4. Troubleshooting	21.8.4.1. Host Boot Troubleshooting
	21.8.4.2. Guest Creation Troubleshooting

	22. Localization -
 i18n/L10n Usage and
 Setup	22.1. Synopsis
	22.2. Using Localization	22.2.1. Setting Locale for Login Shell	22.2.1.1. Login Classes Method	22.2.1.1.1. Utilities Which Change Login Classes

	22.2.1.2. Shell Startup File Method

	22.2.2. Console Setup
	22.2.3. Xorg Setup

	22.3. Finding i18n Applications
	22.4. Locale Configuration for Specific Languages	22.4.1. Russian Language (KOI8-R Encoding)
	22.4.2. Additional Language-Specific Resources

	23. Updating and Upgrading FreeBSD	23.1. Synopsis
	23.2. FreeBSD Update	23.2.1. The Configuration File
	23.2.2. Applying Security Patches
	23.2.3. Performing Major and Minor Version Upgrades	23.2.3.1. Custom Kernels with FreeBSD 9.X and Later
	23.2.3.2. Upgrading Packages After a Major Version
	 Upgrade

	23.2.4. System State Comparison

	23.3. Updating the Documentation Set	23.3.1. Updating Documentation from Source
	23.3.2. Updating Documentation from Ports

	23.4. Tracking a Development Branch	23.4.1. Using FreeBSD-CURRENT
	23.4.2. Using FreeBSD-STABLE

	23.5. Updating FreeBSD from Source	23.5.1. Quick Start
	23.5.2. Preparing for a Source Update
	23.5.3. Updating the Source
	23.5.4. Building from Source	23.5.4.1. Performing a Clean Build
	23.5.4.2. Setting the Number of Jobs
	23.5.4.3. Building Only the Kernel
	23.5.4.4. Building a Custom Kernel

	23.5.5. Installing the Compiled Code
	23.5.6. Completing the Update	23.5.6.1. Merging Configuration Files with
	 mergemaster(8)
	23.5.6.2. Checking for Outdated Files and Libraries
	23.5.6.3. Restarting After the Update

	23.6. Tracking for Multiple Machines

	24. DTrace	24.1. Synopsis
	24.2. Implementation Differences
	24.3. Enabling DTrace Support
	24.4. Using DTrace

	25. USB Device Mode / USB OTG	25.1. Synopsis
	25.2. USB Virtual Serial Ports	25.2.1. Configuring USB Device Mode Serial Ports
	25.2.2. Connecting to USB Device Mode Serial Ports from
	FreeBSD
	25.2.3. Connecting to USB Device Mode Serial Ports from
	macOS
	25.2.4. Connecting to USB Device Mode Serial Ports from
	Linux
	25.2.5. Connecting to USB Device Mode Serial Ports from
	Microsoft Windows 10

	25.3. USB Device Mode Network
 Interfaces
	25.4. USB Virtual Storage Device	25.4.1. Configuring USB Mass Storage Target Using the cfumass
	Startup Script
	25.4.2. Configuring USB Mass Storage Using Other Means

	IV. Network Communication	26. Serial Communications	26.1. Synopsis
	26.2. Serial Terminology and Hardware	26.2.1. Serial Cables and Ports
	26.2.2. Serial Port Configuration

	26.3. Terminals	26.3.1. Terminal Configuration
	26.3.2. Troubleshooting the Connection

	26.4. Dial-in Service	26.4.1. Modem Configuration
	26.4.2. Troubleshooting

	26.5. Dial-out Service	26.5.1. Using a Stock Hayes Modem
	26.5.2. Using AT Commands
	26.5.3. The @ Sign Does Not Work
	26.5.4. Dialing from the Command Line
	26.5.5. Setting the bps Rate
	26.5.6. Accessing a Number of Hosts Through a Terminal
	Server
	26.5.7. Using More Than One Line with
	tip
	26.5.8. Using the Force Character
	26.5.9. Upper Case Characters
	26.5.10. File Transfers with tip
	26.5.11. Using zmodem with
	tip?

	26.6. Setting Up the Serial Console	26.6.1. Quick Serial Console Configuration
	26.6.2. In-Depth Serial Console Configuration
	26.6.3. Setting a Faster Serial Port Speed
	26.6.4. Entering the DDB Debugger from the Serial Line

	27. PPP	27.1. Synopsis
	27.2. Configuring PPP	27.2.1. Basic Configuration
	27.2.2. Advanced Configuration	27.2.2.1. PAP and CHAP Authentication
	27.2.2.2. Using PPP Network Address
	 Translation Capability

	27.2.3. Final System Configuration
	27.2.4. Using ppp
	27.2.5. Configuring Dial-in Services

	27.3. Troubleshooting PPP Connections	27.3.1. Check the Device Nodes
	27.3.2. Connecting Manually
	27.3.3. Debugging

	27.4. Using PPP over Ethernet (PPPoE)	27.4.1. Using a PPPoE Service Tag
	27.4.2. PPPoE with a 3Com®
	HomeConnect® ADSL
	Modem Dual Link

	27.5. Using PPP over
 ATM (PPPoA)	27.5.1. Using mpd
	27.5.2. Using pptpclient

	28. Electronic Mail	28.1. Synopsis
	28.2. Mail Components
	28.3. Sendmail Configuration
	Files
	28.4. Changing the Mail Transfer Agent	28.4.1. Disable Sendmail
	28.4.2. Replace the Default MTA

	28.5. Troubleshooting
	28.6. Advanced Topics	28.6.1. Basic Configuration
	28.6.2. Mail for a Domain

	28.7. Setting Up to Send Only
	28.8. Using Mail with a Dialup Connection
	28.9. SMTP Authentication
	28.10. Mail User Agents	28.10.1. mail
	28.10.2. mutt
	28.10.3. alpine

	28.11. Using fetchmail
	28.12. Using procmail

	29. Network Servers	29.1. Synopsis
	29.2. The inetd
 Super-Server	29.2.1. Configuration File
	29.2.2. Command-Line Options
	29.2.3. Security Considerations

	29.3. Network File System (NFS)	29.3.1. Configuring the Server
	29.3.2. Configuring the Client
	29.3.3. Locking
	29.3.4. Automating Mounts with autofs(5)

	29.4. Network Information System
 (NIS)	29.4.1. NIS Terms and Processes
	29.4.2. Machine Types
	29.4.3. Planning Considerations	29.4.3.1. Choosing a NIS Domain Name
	29.4.3.2. Physical Server Requirements

	29.4.4. Configuring the NIS Master
	Server	29.4.4.1. Initializing the NIS Maps
	29.4.4.2. Adding New Users

	29.4.5. Setting up a NIS Slave Server
	29.4.6. Setting Up an NIS Client
	29.4.7. NIS Security	29.4.7.1. Barring Some Users

	29.4.8. Using Netgroups
	29.4.9. Password Formats

	29.5. Lightweight Directory Access Protocol
	(LDAP)	29.5.1. LDAP Terminology and Structure
	29.5.2. Configuring an LDAP Server

	29.6. Dynamic Host Configuration Protocol
 (DHCP)	29.6.1. Configuring a DHCP Client
	29.6.2. Installing and Configuring a DHCP
	Server

	29.7. Domain Name System (DNS)	29.7.1. Reasons to Run a Name Server
	29.7.2. DNS Server Configuration

	29.8. Apache HTTP Server	29.8.1. Configuring and Starting Apache
	29.8.2. Virtual Hosting
	29.8.3. Apache Modules	29.8.3.1. mod_ssl
	29.8.3.2. mod_perl
	29.8.3.3. mod_php

	29.8.4. Dynamic Websites	29.8.4.1. Django
	29.8.4.2. Ruby on Rails

	29.9. File Transfer Protocol (FTP)	29.9.1. Configuration

	29.10. File and Print Services for Microsoft® Windows® Clients
 (Samba)	29.10.1. Server Configuration	29.10.1.1. Global Settings
	29.10.1.2. Security Settings
	29.10.1.3. Samba Users

	29.10.2. Starting Samba

	29.11. Clock Synchronization with NTP	29.11.1. NTP Configuration	29.11.1.1. The /etc/ntp.conf file
	29.11.1.2. NTP entries in /etc/rc.conf
	29.11.1.3. Ntpd and the unpriveleged
	 ntpd user

	29.11.2. Using NTP with a
	PPP Connection

	29.12. iSCSI Initiator and Target
 Configuration	29.12.1. Configuring an iSCSI Target	29.12.1.1. Authentication

	29.12.2. Configuring an iSCSI Initiator	29.12.2.1. Connecting to a Target Without a Configuration
	 File
	29.12.2.2. Connecting to a Target with a Configuration
	 File

	30. Firewalls	30.1. Synopsis
	30.2. Firewall Concepts
	30.3. PF	30.3.1. Enabling PF
	30.3.2. PF Rulesets	30.3.2.1. A Simple Gateway with NAT
	30.3.2.2. Creating an FTP Proxy
	30.3.2.3. Managing ICMP	30.3.2.3.1. Path MTU Discovery

	30.3.2.4. Using Tables
	30.3.2.5. Using Overload Tables to Protect
	 SSH
	30.3.2.6. Protecting Against SPAM
	30.3.2.7. Network Hygiene
	30.3.2.8. Handling Non-Routable Addresses

	30.3.3. Enabling ALTQ

	30.4. IPFW	30.4.1. Enabling IPFW
	30.4.2. IPFW Rule Syntax
	30.4.3. Example Ruleset
	30.4.4. In-kernel NAT	30.4.4.1. Port Redirection
	30.4.4.2. Address Redirection
	30.4.4.3. Userspace NAT

	30.4.5. The IPFW Command	30.4.5.1. Logging Firewall Messages
	30.4.5.2. Building a Rule Script

	30.4.6. IPFW Kernel Options

	30.5. IPFILTER (IPF)	30.5.1. Enabling IPF
	30.5.2. IPF Rule Syntax
	30.5.3. Example Ruleset
	30.5.4. Configuring NAT
	30.5.5. Viewing IPF Statistics
	30.5.6. IPF Logging

	30.6. Blacklistd	30.6.1. Enabling Blacklistd
	30.6.2. Creating a Blacklistd Ruleset	30.6.2.1. Local Rules
	30.6.2.2. Remote Rules

	30.6.3. Blacklistd Client Configuration
	30.6.4. Blacklistd Management
	30.6.5. Removing Hosts from the Block List

	31. Advanced Networking	31.1. Synopsis
	31.2. Gateways and Routes	31.2.1. Routing Basics
	31.2.2. Configuring a Router with Static Routes
	31.2.3. Troubleshooting
	31.2.4. Multicast Considerations

	31.3. Wireless Networking	31.3.1. Wireless Networking Basics
	31.3.2. Quick Start
	31.3.3. Basic Setup	31.3.3.1. Kernel Configuration
	31.3.3.2. Setting the Correct Region

	31.3.4. Infrastructure Mode	31.3.4.1. FreeBSD Clients	31.3.4.1.1. How to Find Access Points
	31.3.4.1.2. Basic Settings	31.3.4.1.2.1. Selecting an Access Point
	31.3.4.1.2.2. Authentication
	31.3.4.1.2.3. Getting an IP Address with
	 DHCP
	31.3.4.1.2.4. Static IP Address

	31.3.4.1.3. WPA	31.3.4.1.3.1. WPA-PSK
	31.3.4.1.3.2. WPA with
	 EAP-TLS
	31.3.4.1.3.3. WPA with
	 EAP-TTLS
	31.3.4.1.3.4. WPA with
	 EAP-PEAP

	31.3.4.1.4. WEP

	31.3.5. Ad-hoc Mode
	31.3.6. FreeBSD Host Access Points	31.3.6.1. Basic Settings
	31.3.6.2. Host-based Access Point Without Authentication or
	 Encryption
	31.3.6.3. WPA2 Host-based Access Point	31.3.6.3.1. WPA2-PSK

	31.3.6.4. WEP Host-based Access Point

	31.3.7. Using Both Wired and Wireless Connections
	31.3.8. Troubleshooting

	31.4. USB Tethering
	31.5. Bluetooth	31.5.1. Loading Bluetooth Support
	31.5.2. Finding Other Bluetooth Devices
	31.5.3. Device Pairing
	31.5.4. Network Access with
	PPP Profiles
	31.5.5. Bluetooth Protocols	31.5.5.1. Logical Link Control and Adaptation Protocol
	 (L2CAP)
	31.5.5.2. Radio Frequency Communication
	 (RFCOMM)
	31.5.5.3. Service Discovery Protocol
	 (SDP)
	31.5.5.4. OBEX Object Push
	 (OPUSH)
	31.5.5.5. Serial Port Profile (SPP)

	31.5.6. Troubleshooting

	31.6. Bridging	31.6.1. Enabling the Bridge
	31.6.2. Enabling Spanning Tree
	31.6.3. Bridge Interface Parameters
	31.6.4. SNMP Monitoring

	31.7. Link Aggregation and Failover	31.7.1. Configuration Examples

	31.8. Diskless Operation with PXE	31.8.1. Setting Up the PXE
	 Environment
	31.8.2. Configuring the DHCP Server
	31.8.3. Debugging PXE Problems

	31.9. IPv6	31.9.1. Background on IPv6 Addresses
	31.9.2. Configuring IPv6
	31.9.3. Connecting to a Provider
	31.9.4. Router Advertisement and Host Auto Configuration
	31.9.5. IPv6 and IPv6
	Address Mapping

	31.10. Common Address Redundancy Protocol
	(CARP)	31.10.1. Using CARP on FreeBSD 10 and
	Later
	31.10.2. Using CARP on FreeBSD 9 and
	Earlier

	31.11. VLANs

	V. Appendices	A. Obtaining FreeBSD	A.1. CD and
 DVD Sets
	A.2. FTP Sites
	A.3. Using Subversion	A.3.1. Introduction
	A.3.2. Root SSL Certificates
	A.3.3. Svnlite
	A.3.4. Installation
	A.3.5. Running Subversion
	A.3.6. Subversion Mirror
	Sites
	A.3.7. For More Information

	A.4. Using rsync

	B. Bibliography	B.1. Books Specific to FreeBSD
	B.2. Users' Guides
	B.3. Administrators' Guides
	B.4. Programmers' Guides
	B.5. Operating System Internals
	B.6. Security Reference
	B.7. Hardware Reference
	B.8. UNIX® History
	B.9. Periodicals, Journals, and Magazines

	C. Resources on the Internet	C.1. Websites
	C.2. Mailing Lists	C.2.1. List Summary
	C.2.2. How to Subscribe
	C.2.3. List Charters
	C.2.4. Filtering on the Mailing Lists

	C.3. Usenet Newsgroups	C.3.1. BSD Specific Newsgroups
	C.3.2. Other UNIX® Newsgroups of Interest
	C.3.3. X Window System

	C.4. Official Mirrors

	D. OpenPGP Keys	D.1. Officers	D.1.1. Security Officer Team <security-officer@FreeBSD.org>
	D.1.2. Security Team Secretary <secteam-secretary@FreeBSD.org>
	D.1.3. Core Team Secretary <core-secretary@FreeBSD.org>
	D.1.4. Ports Management Team Secretary <portmgr-secretary@FreeBSD.org>
	D.1.5. <doceng-secretary@FreeBSD.org>

	FreeBSD Glossary
	Index

List of Figures
	2.1. FreeBSD Boot Loader Menu
	2.2. FreeBSD Boot Options Menu
	2.3. Welcome Menu
	2.4. Keymap Loading
	2.5. Keymap Selection Menu
	2.6. Keymap Testing Menu
	2.7. Setting the Hostname
	2.8. Selecting Components to Install
	2.9. Installing from the Network
	2.10. Partitioning Choices
	2.11. Selecting from Multiple Disks
	2.12. Selecting Entire Disk or Partition
	2.13. Confirmation
	2.14. Select Partition Scheme
	2.15. Review Created Partitions
	2.16. Final Confirmation
	2.17. Manually Create Partitions
	2.18. Manually Create Partitions
	2.19. Manually Create Partitions
	2.20. ZFS Partitioning Menu
	2.21. ZFS Pool Type
	2.22. Disk Selection
	2.23. Invalid Selection
	2.24. Rescan Devices
	2.25. Analyzing a Disk
	2.26. Pool Name
	2.27. Swap Amount
	2.28. Last Chance
	2.29. Disk Encryption Password
	2.30. Initializing Encryption
	2.31. Fetching Distribution Files
	2.32. Verifying Distribution Files
	2.33. Extracting Distribution Files
	2.34. Setting the root Password
	2.35. Select a Region
	2.36. Select a Country
	2.37. Select a Time Zone
	2.38. Confirm Time Zone
	2.39. Select Date
	2.40. Select Time
	2.41. Selecting Additional Services to Enable
	2.42. Selecting Hardening Security Options
	2.43. Add User Accounts
	2.44. Enter User Information
	2.45. Exit User and Group Management
	2.46. Final Configuration
	2.47. Manual Configuration
	2.48. Complete the Installation
	2.49. Choose a Network Interface
	2.50. Scanning for Wireless Access Points
	2.51. Choosing a Wireless Network
	2.52. WPA2 Setup
	2.53. Choose IPv4 Networking
	2.54. Choose IPv4 DHCP
	 Configuration
	2.55. IPv4 Static Configuration
	2.56. Choose IPv6 Networking
	2.57. Choose IPv6 SLAAC Configuration
	2.58. IPv6 Static Configuration
	2.59. DNS Configuration
	2.60. Choosing a Mirror
	31.1. PXE Booting Process with
	 NFS Root Mount

List of Tables
	2.1. Partitioning Schemes
	3.1. Utilities for Managing User Accounts
	3.2. UNIX® Permissions
	3.3. Disk Device Names
	3.4. Common Environment Variables
	5.1. XDM Configuration Files
	7.1. Common Error Messages
	9.1. Output PDLs
	12.1. Loader Built-In Commands
	12.2. Kernel Interaction During Boot
	13.1. Login Class Resource Limits
	16.1. Default Audit Event Classes
	16.2. Prefixes for Audit Event Classes
	22.1. Common Language and Country Codes
	22.2. Defined Terminal Types for Character Sets
	22.3. Available Console from Ports Collection
	22.4. Available Input Methods
	23.1. FreeBSD Versions and Repository Paths
	26.1. RS-232C Signal Names
	26.2. DB-25 to DB-25 Null-Modem Cable
	26.3. DB-9 to DB-9 Null-Modem Cable
	26.4. DB-9 to DB-25 Null-Modem Cable
	29.1. NIS Terminology
	29.2. Additional Users
	29.3. Additional Systems
	29.4. DNS Terminology
	30.1. Useful pfctl Options
	31.1. Commonly Seen Routing Table Flags
	31.2. Station Capability Codes
	31.3. Reserved IPv6 Addresses

List of Examples
	2.1. Creating Traditional Split File System
	 Partitions
	3.1. Install a Program As the Superuser
	3.2. Adding a User on FreeBSD
	3.3. rmuser Interactive Account
	 Removal
	3.4. Using chpass as
	 Superuser
	3.5. Using chpass as Regular
	 User
	3.6. Changing Your Password
	3.7. Changing Another User's Password as the
	 Superuser
	3.8. Adding a Group Using pw(8)
	3.9. Adding User Accounts to a New Group Using
	 pw(8)
	3.10. Adding a New Member to a Group Using pw(8)
	3.11. Using id(1) to Determine Group Membership
	3.12. Sample Disk, Slice, and Partition Names
	3.13. Conceptual Model of a Disk
	5.1. Select Intel® Video Driver in a File
	5.2. Select Radeon Video Driver in a File
	5.3. Select VESA Video Driver in a
		File
	5.4. Select scfb Video Driver in a
		File
	5.5. Set Screen Resolution in a File
	5.6. Manually Setting Monitor Frequencies
	5.7. Setting a Keyboard Layout
	5.8. Setting Multiple Keyboard Layouts
	5.9. Enabling Keyboard Exit from X
	5.10. Setting the Number of Mouse Buttons
	11.1. Sample Log Server Configuration
	11.2. Creating a Swap File
	12.1. boot0 Screenshot
	12.2. boot2 Screenshot
	12.3. Configuring an Insecure Console in
	 /etc/ttys
	13.1. Create a Secure Tunnel for
	 SMTP
	13.2. Secure Access of a POP3
	 Server
	13.3. Bypassing a Firewall
	14.1. mergemaster(8) on Untrusted Jail
	14.2. mergemaster(8) on Trusted Jail
	14.3. Running BIND in a Jail
	17.1. Using dump over
	 ssh
	17.2. Using dump over
	 ssh with RSH
	 Set
	17.3. Backing Up the Current Directory with
	 tar
	17.4. Restoring Up the Current Directory with
	 tar
	17.5. Using ls and cpio
	 to Make a Recursive Backup of the Current Directory
	17.6. Backing Up the Current Directory with
	 pax
	18.1. Labeling Partitions on the Boot Disk
	23.1. Increasing the Number of Build Jobs
	26.1. Configuring Terminal Entries
	29.1. Reloading the inetd
	 Configuration File
	29.2. Mounting an Export with autofs(5)
	29.3. Sample /etc/ntp.conf
	31.1. LACP Aggregation with a Cisco®
	 Switch
	31.2. Failover Mode
	31.3. Failover Mode Between Ethernet and Wireless
	 Interfaces

3.8. Processes and Daemons
FreeBSD is a multi-tasking operating system. Each program
 running at any one time is called a
 process. Every running command starts
 at least one new process and there are a number of system
 processes that are run by FreeBSD.
Each process is uniquely identified by a number called a
 process ID (PID).
 Similar to files, each process has one owner and group, and
 the owner and group permissions are used to determine which
 files and devices the process can open. Most processes also
 have a parent process that started them. For example, the
 shell is a process, and any command started in the shell is a
 process which has the shell as its parent process. The
 exception is a special process called init(8) which is
 always the first process to start at boot time and which always
 has a PID of 1.
Some programs are not designed to be run with continuous
 user input and disconnect from the terminal at the first
 opportunity. For example, a web server responds to web
 requests, rather than user input. Mail servers are another
 example of this type of application. These types of programs
 are known as daemons. The term daemon
 comes from Greek mythology and represents an entity that is
 neither good nor evil, and which invisibly performs useful
 tasks. This is why the BSD mascot is the cheerful-looking
 daemon with sneakers and a pitchfork.
There is a convention to name programs that normally run as
 daemons with a trailing “d”. For example,
 BIND is the Berkeley Internet Name
 Domain, but the actual program that executes is
 named. The
 Apache web server program is
 httpd and the line printer spooling daemon
 is lpd. This is only a naming convention.
 For example, the main mail daemon for the
 Sendmail application is
 sendmail, and not
 maild.
3.8.1. Viewing Processes
To see the processes running on the system, use ps(1)
	or top(1). To display a static list of the currently
	running processes, their PIDs, how much
	memory they are using, and the command they were started with,
	use ps(1). To display all the running processes and
	update the display every few seconds in order to interactively
	see what the computer is doing, use top(1).
By default, ps(1) only shows the commands that are
	running and owned by the user. For example:
% ps
 PID TT STAT TIME COMMAND
8203 0 Ss 0:00.59 /bin/csh
8895 0 R+ 0:00.00 ps
The output from ps(1) is organized into a number of
	columns. The PID column displays the
	process ID. PIDs are assigned starting at
	1, go up to 99999, then wrap around back to the beginning.
	However, a PID is not reassigned if it is
	already in use. The TT column shows the
	tty the program is running on and STAT
	shows the program's state. TIME is the
	amount of time the program has been running on the CPU. This
	is usually not the elapsed time since the program was started,
	as most programs spend a lot of time waiting for things to
	happen before they need to spend time on the CPU. Finally,
	COMMAND is the command that was used to
	start the program.
A number of different options are available to change the
	information that is displayed. One of the most useful sets is
	auxww, where a displays
	information about all the running processes of all users,
	u displays the username and memory usage of
	the process' owner, x displays
	information about daemon processes, and ww
	causes ps(1) to display the full command line for each
	process, rather than truncating it once it gets too long to
	fit on the screen.
The output from top(1) is similar:
% top
last pid: 9609; load averages: 0.56, 0.45, 0.36 up 0+00:20:03 10:21:46
107 processes: 2 running, 104 sleeping, 1 zombie
CPU: 6.2% user, 0.1% nice, 8.2% system, 0.4% interrupt, 85.1% idle
Mem: 541M Active, 450M Inact, 1333M Wired, 4064K Cache, 1498M Free
ARC: 992M Total, 377M MFU, 589M MRU, 250K Anon, 5280K Header, 21M Other
Swap: 2048M Total, 2048M Free

 PID USERNAME THR PRI NICE SIZE RES STATE C TIME WCPU COMMAND
 557 root 1 -21 r31 136M 42296K select 0 2:20 9.96% Xorg
 8198 dru 2 52 0 449M 82736K select 3 0:08 5.96% kdeinit4
 8311 dru 27 30 0 1150M 187M uwait 1 1:37 0.98% firefox
 431 root 1 20 0 14268K 1728K select 0 0:06 0.98% moused
 9551 dru 1 21 0 16600K 2660K CPU3 3 0:01 0.98% top
 2357 dru 4 37 0 718M 141M select 0 0:21 0.00% kdeinit4
 8705 dru 4 35 0 480M 98M select 2 0:20 0.00% kdeinit4
 8076 dru 6 20 0 552M 113M uwait 0 0:12 0.00% soffice.bin
 2623 root 1 30 10 12088K 1636K select 3 0:09 0.00% powerd
 2338 dru 1 20 0 440M 84532K select 1 0:06 0.00% kwin
 1427 dru 5 22 0 605M 86412K select 1 0:05 0.00% kdeinit4
The output is split into two sections. The header (the
	first five or six lines) shows the PID of
	the last process to run, the system load averages (which are a
	measure of how busy the system is), the system uptime (time
	since the last reboot) and the current time. The other
	figures in the header relate to how many processes are
	running, how much memory and swap space has been used, and how
	much time the system is spending in different CPU states. If
	the ZFS file system module has been loaded,
	an ARC line indicates how much data was
	read from the memory cache instead of from disk.
Below the header is a series of columns containing similar
	information to the output from ps(1), such as the
	PID, username, amount of CPU time, and the
	command that started the process. By default, top(1)
	also displays the amount of memory space taken by the process.
	This is split into two columns: one for total size and one for
	resident size. Total size is how much memory the application
	has needed and the resident size is how much it is actually
	using now.
top(1) automatically updates the display every two
	seconds. A different interval can be specified with
	-s.
3.8.2. Killing Processes
One way to communicate with any running process or daemon
	is to send a signal using kill(1).
	There are a number of different signals; some have a specific
	meaning while others are described in the application's
	documentation. A user can only send a signal to a process
	they own and sending a signal to someone else's process will
	result in a permission denied error. The exception is the
	root user, who can
	send signals to anyone's processes.
The operating system can also send a signal to a process.
	If an application is badly written and tries to access memory
	that it is not supposed to, FreeBSD will send the process the
	“Segmentation Violation” signal
	(SIGSEGV). If an application has been
	written to use the alarm(3) system call to be alerted
	after a period of time has elapsed, it will be sent the
	“Alarm” signal
	(SIGALRM).
Two signals can be used to stop a process:
	SIGTERM and SIGKILL.
	SIGTERM is the polite way to kill a process
	as the process can read the signal, close any log files it may
	have open, and attempt to finish what it is doing before
	shutting down. In some cases, a process may ignore
	SIGTERM if it is in the middle of some task
	that cannot be interrupted.
SIGKILL cannot be ignored by a
	process. Sending a SIGKILL to a
	process will usually stop that process there and then.
	[1].
Other commonly used signals are SIGHUP,
	SIGUSR1, and SIGUSR2.
	Since these are general purpose signals, different
	applications will respond differently.
For example, after changing a web server's configuration
	file, the web server needs to be told to re-read its
	configuration. Restarting httpd would
	result in a brief outage period on the web server. Instead,
	send the daemon the SIGHUP signal. Be
	aware that different daemons will have different behavior, so
	refer to the documentation for the daemon to determine if
	SIGHUP will achieve the desired
	results.
Procedure 3.1. Sending a Signal to a Process
This example shows how to send a signal to
	 inetd(8). The inetd(8) configuration file is
	 /etc/inetd.conf, and inetd(8) will
	 re-read this configuration file when it is sent a
	 SIGHUP.
	Find the PID of the process to send
	 the signal to using pgrep(1). In this example, the
	 PID for inetd(8) is 198:
% pgrep -l inetd
198 inetd -wW

	Use kill(1) to send the signal. Because
	 inetd(8) is owned by
	 root, use
	 su(1) to become
	 root
	 first.
% su
Password:
/bin/kill -s HUP 198
Like most UNIX® commands, kill(1) will not print
	 any output if it is successful. If a signal is sent to a
	 process not owned by that user, the message
	 kill: PID: Operation
	 not permitted will be displayed. Mistyping
	 the PID will either send the signal to
	 the wrong process, which could have negative results, or
	 will send the signal to a PID that is
	 not currently in use, resulting in the error
	 kill: PID: No such
	 process.
Why Use /bin/kill?:
Many shells provide kill as a
	 built in command, meaning that the shell will send the
	 signal directly, rather than running
	 /bin/kill. Be aware that different
	 shells have a different syntax for specifying the name
	 of the signal to send. Rather than try to learn all of
	 them, it can be simpler to specify
	 /bin/kill.

When sending other signals, substitute
	TERM or KILL with the
	name of the signal.
Important:
Killing a random process on the system is a bad idea.
	 In particular, init(8), PID 1, is
	 special. Running /bin/kill -s KILL 1 is
	 a quick, and unrecommended, way to shutdown the system.
	 Always double check the arguments to
	 kill(1) before pressing
	 Return.

[1] There are a few tasks that cannot be
	 interrupted. For example, if the process is trying to
	 read from a file that is on another computer on the
	 network, and the other computer is unavailable, the
	 process is said to be “uninterruptible”.
	 Eventually the process will time out, typically after two
	 minutes. As soon as this time out occurs the process will
	 be killed.

Colophon
This book is the combined work of hundreds of contributors to
 “The FreeBSD Documentation Project”. The text is
 authored in XML according to the DocBook DTD and is formatted
 from XML into many different presentation formats using
 XSLT. The printed version of this
 document would not be possible without Donald Knuth's
 TeX typesetting language, Leslie
 Lamport's LaTeX, or Sebastian Rahtz's
 JadeTeX macro package.

1.2. Welcome to FreeBSD!
FreeBSD is an Open Source, standards-compliant Unix-like
 operating system for x86 (both 32 and 64 bit), ARM®, AArch64,
 RISC-V®, MIPS®, POWER®, PowerPC®, and Sun UltraSPARC®
 computers. It provides all the features that are
 nowadays taken for granted, such as preemptive multitasking,
 memory protection, virtual memory, multi-user facilities, SMP
 support, all the Open Source development tools for different
 languages and frameworks, and desktop features centered around
 X Window System, KDE, or GNOME. Its particular strengths
 are:
	Liberal Open Source license,
	 which grants you rights to freely modify and extend
	 its source code and incorporate it in both Open Source
	 projects and closed products without imposing
	 restrictions typical to copyleft licenses, as well
	 as avoiding potential license incompatibility
	 problems.

	Strong TCP/IP networking
	 - FreeBSD
	 implements industry standard protocols with ever
	 increasing performance and scalability. This makes
	 it a good match in both server, and routing/firewalling
	 roles - and indeed many companies and vendors use it
	 precisely for that purpose.

	Fully integrated OpenZFS support,
	 including root-on-ZFS, ZFS Boot Environments, fault
	 management, administrative delegation, support for jails,
	 FreeBSD specific documentation, and system installer
	 support.

	Extensive security features,
	 from the Mandatory Access Control framework to Capsicum
	 capability and sandbox mechanisms.

	Over 30 thousand prebuilt
	 packages for all supported architectures,
	 and the Ports Collection which makes it easy to build your
	 own, customized ones.

	Documentation - in addition
	 to Handbook and books from different authors that cover
	 topics ranging from system administration to kernel
	 internals, there are also the man(1) pages, not only
	 for userspace daemons, utilities, and configuration files,
	 but also for kernel driver APIs (section 9) and individual
	 drivers (section 4).

	Simple and consistent repository structure
	 and build system - FreeBSD uses a single
	 repository for all of its components, both kernel and
	 userspace. This, along with an unified and easy to
	 customize build system and a well thought out development
	 process makes it easy to integrate FreeBSD with build
	 infrastructure for your own product.

	Staying true to Unix philosophy,
	 preferring composability instead of monolithic “all
	 in one” daemons with hardcoded behavior.

	
	 Binary compatibility with Linux,
	 which makes it possible to run many Linux binaries without
	 the need for virtualisation.

FreeBSD is based on the 4.4BSD-Lite release from Computer
 Systems Research Group (CSRG) at the University of California at Berkeley, and
 carries on the distinguished tradition of BSD systems
 development. In addition to the fine work provided by CSRG,
 the FreeBSD Project has put in many thousands of man-hours
 into extending the functionality and fine-tuning the system
 for maximum performance and reliability
 in real-life load situations. FreeBSD offers performance and
 reliability on par with other Open Source and commercial
 offerings, combined with cutting-edge features not available
 anywhere else.
1.2.1. What Can FreeBSD Do?
The applications to which FreeBSD can be put are truly
	limited only by your own imagination. From software
	development to factory automation, inventory control to
	azimuth correction of remote satellite antennae; if it can be
	done with a commercial UNIX® product then it is more than
	likely that you can do it with FreeBSD too! FreeBSD also benefits
	significantly from literally thousands of high quality
	applications developed by research centers and universities
	around the world, often available at little to no cost.
Because the source code for FreeBSD itself is freely
	available, the system can also be customized to an almost
	unheard of degree for special applications or projects, and in
	ways not generally possible with operating systems from most
	major commercial vendors. Here is just a sampling of some of
	the applications in which people are currently using
	FreeBSD:
	Internet Services: The robust
	 TCP/IP networking built into FreeBSD makes it an ideal
	 platform for a variety of Internet services such
	 as:
	Web servers

	IPv4 and IPv6 routing

	Firewalls
		and NAT
		(“IP masquerading”) gateways

	FTP servers

	
		
		
		Email servers

	And more...

	Education: Are you a student of
	 computer science or a related engineering field? There
	 is no better way of learning about operating systems,
	 computer architecture and networking than the hands on,
	 under the hood experience that FreeBSD can provide. A number
	 of freely available CAD, mathematical and graphic design
	 packages also make it highly useful to those whose primary
	 interest in a computer is to get
	 other work done!

	Research: With source code for
	 the entire system available, FreeBSD is an excellent platform
	 for research in operating systems as well as other
	 branches of computer science. FreeBSD's freely available
	 nature also makes it possible for remote groups to
	 collaborate on ideas or shared development without having
	 to worry about special licensing agreements or limitations
	 on what may be discussed in open forums.

	Networking: Need a new
	 router? A name server (DNS)? A firewall to keep people out of your
	 internal network? FreeBSD can easily turn that unused
	 PC sitting in the corner into an advanced router with
	 sophisticated packet-filtering capabilities.

	Embedded: FreeBSD makes an
	 excellent platform to build embedded systems upon.
	
	 With support for the ARM®, MIPS® and PowerPC®
	 platforms, coupled with a robust network stack, cutting
	 edge features and the permissive BSD
	 license FreeBSD makes an excellent foundation for
	 building embedded routers, firewalls, and other
	 devices.

	
	
	
	
	 Desktop: FreeBSD makes a
	 fine choice for an inexpensive desktop solution
	 using the freely available X11 server.
	 FreeBSD offers a choice from many open-source desktop
	 environments, including the standard
	 GNOME and
	 KDE graphical user interfaces.
	 FreeBSD can even boot “diskless” from
	 a central server, making individual workstations
	 even cheaper and easier to administer.

	Software Development: The basic
	 FreeBSD system comes with a full suite of development
	 tools including a full
	 C/C++
	 compiler and debugger suite.
	 Support for many other languages are also available
	 through the ports and packages collection.

FreeBSD is available to download free of charge, or can be
	obtained on either CD-ROM or DVD. Please see
	Appendix A, Obtaining FreeBSD for more information about obtaining
	FreeBSD.
1.2.2. Who Uses FreeBSD?
FreeBSD has been known for its web serving capabilities -
	sites that run on FreeBSD include
	Hacker News,
	Netcraft,
	NetEase,
	Netflix,
	Sina,
	Sony Japan,
	Rambler,
	Yahoo!, and
	Yandex.

FreeBSD's advanced features, proven security, predictable
	release cycle, and permissive license have led to its use as a
	platform for building many commercial and open source
	appliances, devices, and products. Many of the world's
	largest IT companies use FreeBSD:
	Apache
	 - The Apache Software Foundation runs most of
	 its public facing infrastructure, including possibly one
	 of the largest SVN repositories in the world with over 1.4
	 million commits, on FreeBSD.

	Apple
	 - OS X borrows heavily from FreeBSD for the
	 network stack, virtual file system, and many userland
	 components. Apple iOS also contains elements borrowed
	 from FreeBSD.

	Cisco
	 - IronPort network security and anti-spam
	 appliances run a modified FreeBSD kernel.

	Citrix
	 - The NetScaler line of security appliances
	 provide layer 4-7 load balancing, content caching,
	 application firewall, secure VPN, and mobile cloud network
	 access, along with the power of a FreeBSD shell.

	Dell EMC Isilon
	 - Isilon's enterprise storage appliances
	 are based on FreeBSD. The extremely liberal FreeBSD license
	 allowed Isilon to integrate their intellectual property
	 throughout the kernel and focus on building their product
	 instead of an operating system.

	Quest
	 KACE
	 - The KACE system management appliances run
	 FreeBSD because of its reliability, scalability, and the
	 community that supports its continued development.

	iXsystems
	 - The TrueNAS line of unified storage
	 appliances is based on FreeBSD. In addition to their
	 commercial products, iXsystems also manages development of
	 the open source projects TrueOS and FreeNAS.

	Juniper
	 - The JunOS operating system that powers all
	 Juniper networking gear (including routers, switches,
	 security, and networking appliances) is based on FreeBSD.
	 Juniper is one of many vendors that showcases the
	 symbiotic relationship between the project and vendors of
	 commercial products. Improvements generated at Juniper
	 are upstreamed into FreeBSD to reduce the complexity of
	 integrating new features from FreeBSD back into JunOS in the
	 future.

	McAfee
	 - SecurOS, the basis of McAfee enterprise
	 firewall products including Sidewinder is based on
	 FreeBSD.

	NetApp
	 - The Data ONTAP GX line of storage
	 appliances are based on FreeBSD. In addition, NetApp has
	 contributed back many features, including the new BSD
	 licensed hypervisor, bhyve.

	Netflix
	 - The OpenConnect appliance that Netflix
	 uses to stream movies to its customers is based on FreeBSD.
	 Netflix has made extensive contributions to the codebase
	 and works to maintain a zero delta from mainline FreeBSD.
	 Netflix OpenConnect appliances are responsible for
	 delivering more than 32% of all Internet traffic in North
	 America.

	Sandvine
	 - Sandvine uses FreeBSD as the basis of their
	 high performance real-time network processing platforms
	 that make up their intelligent network policy control
	 products.

	Sony
	 - The PlayStation 4 gaming console runs a
	 modified version of FreeBSD.

	Sophos
	 - The Sophos Email Appliance product is based
	 on a hardened FreeBSD and scans inbound mail for spam and
	 viruses, while also monitoring outbound mail for malware
	 as well as the accidental loss of sensitive
	 information.

	Spectra
	 Logic
	 - The nTier line of archive grade storage
	 appliances run FreeBSD and OpenZFS.

	Stormshield
	 - Stormshield Network Security appliances
	 are based on a hardened version of FreeBSD. The BSD license
	 allows them to integrate their own intellectual property with
	 the system while returning a great deal of interesting
	 development to the community.

	The Weather
	 Channel
	 - The IntelliStar appliance that is installed
	 at each local cable provider's headend and is responsible
	 for injecting local weather forecasts into the cable TV
	 network's programming runs FreeBSD.

	Verisign
	 - Verisign is responsible for operating the
	 .com and .net root domain registries as well as the
	 accompanying DNS infrastructure. They rely on a number of
	 different network operating systems including FreeBSD to
	 ensure there is no common point of failure in their
	 infrastructure.

	Voxer
	 - Voxer powers their mobile voice messaging
	 platform with ZFS on FreeBSD. Voxer switched from a Solaris
	 derivative to FreeBSD because of its superior documentation,
	 larger and more active community, and more developer
	 friendly environment. In addition to critical features
	 like ZFS and DTrace, FreeBSD also offers
	 TRIM support for ZFS.

	Fudo
	 Security
	 - The FUDO security appliance allows
	 enterprises to monitor, control, record, and audit
	 contractors and administrators who work on their systems.
	 Based on all of the best security features of FreeBSD
	 including ZFS, GELI, Capsicum, HAST, and
	 auditdistd.

FreeBSD has also spawned a number of related open source
	projects:
	BSD
	 Router
	 - A FreeBSD based replacement for large
	 enterprise routers designed to run on standard PC
	 hardware.

	FreeNAS
	 - A customized FreeBSD designed to be used as a
	 network file server appliance. Provides a python based
	 web interface to simplify the management of both the UFS
	 and ZFS file systems. Includes support for NFS, SMB/CIFS,
	 AFP, FTP, and iSCSI. Includes an extensible plugin system
	 based on FreeBSD jails.

	GhostBSD
	 - is derived from FreeBSD, uses the GTK
	 environment to provide a beautiful looks and comfortable
	 experience on the modern BSD platform offering a natural
	 and native UNIX® work environment.

	mfsBSD
	 - A toolkit for building a FreeBSD system image
	 that runs entirely from memory.

	NAS4Free
	 - A file server distribution based on FreeBSD
	 with a PHP powered web interface.

	OPNSense
	 - OPNsense is an open source, easy-to-use and
	 easy-to-build FreeBSD based firewall and routing platform.
	 OPNsense includes most of the features available in
	 expensive commercial firewalls, and more in many cases.
	 It brings the rich feature set of commercial offerings
	 with the benefits of open and verifiable sources.

	TrueOS
	 - TrueOS is based on the legendary security
	 and stability of FreeBSD. TrueOS follows FreeBSD-CURRENT, with
	 the latest drivers, security updates, and packages
	 available.

	FuryBSD
	 - is a brand new, open source FreeBSD desktop.
	 FuryBSD pays homage to desktop BSD projects of the past
	 like PC-BSD and TrueOS with its graphical interface and
	 adds additional tools like a live, hybrid USB/DVD image.
	 FuryBSD is completely free to use and distributed under
	 the BSD license.

	MidnightBSD
	 - is a FreeBSD derived operating system
	 developed with desktop users in mind. It includes all the
	 software you'd expect for your daily tasks: mail,
	 web browsing, word processing, gaming, and much
	 more.

	pfSense
	 - A firewall distribution based on FreeBSD with
	 a huge array of features and extensive IPv6
	 support.

	ZRouter
	 - An open source alternative firmware for
	 embedded devices based on FreeBSD. Designed to replace the
	 proprietary firmware on off-the-shelf routers.

A list of
	 testimonials from companies basing their products and
	 services on FreeBSD can be found at the FreeBSD
	 Foundation website. Wikipedia also maintains a list
	 of products based on FreeBSD.
13.5. Kerberos
Contributed by Tillman Hodgson. Based on a contribution by Mark Murray. Kerberos is a network
 authentication protocol which was originally created by the
 Massachusetts Institute of Technology (MIT)
 as a way to securely provide authentication across a potentially
 hostile network. The Kerberos
 protocol uses strong cryptography so that both a client and
 server can prove their identity without sending any unencrypted
 secrets over the network. Kerberos
 can be described as an identity-verifying proxy system and as a
 trusted third-party authentication system. After a user
 authenticates with Kerberos, their
 communications can be encrypted to assure privacy and data
 integrity.
The only function of Kerberos is
 to provide the secure authentication of users and servers on the
 network. It does not provide authorization or auditing
 functions. It is recommended that
 Kerberos be used with other security
 methods which provide authorization and audit services.
The current version of the protocol is version 5, described
 in RFC 4120. Several free
 implementations of this protocol are available, covering a wide
 range of operating systems. MIT continues to
 develop their Kerberos package. It
 is commonly used in the US as a cryptography
 product, and has historically been subject to
 US export regulations. In FreeBSD,
 MIT Kerberos is
 available as the security/krb5 package or
 port. The Heimdal Kerberos
 implementation was explicitly developed outside of the
 US to avoid export regulations. The Heimdal
 Kerberos distribution is included in
 the base FreeBSD installation, and another distribution with more
 configurable options is available as
 security/heimdal in the Ports
 Collection.
In Kerberos users and services
 are identified as “principals” which are contained
 within an administrative grouping, called a
 “realm”. A typical user principal would be of the
 form
 user@REALM
 (realms are traditionally uppercase).
This section provides a guide on how to set up
 Kerberos using the Heimdal
 distribution included in FreeBSD.
For purposes of demonstrating a
 Kerberos installation, the name
 spaces will be as follows:
	The DNS domain (zone) will be
	 example.org.

	The Kerberos realm will be
	 EXAMPLE.ORG.

Note:
Use real domain names when setting up
	Kerberos, even if it will run
	internally. This avoids DNS problems and
	assures inter-operation with other
	Kerberos realms.

13.5.1. Setting up a Heimdal KDC
The Key Distribution Center (KDC) is
	the centralized authentication service that
	Kerberos provides, the
	“trusted third party” of the system. It is the
	computer that issues Kerberos
	tickets, which are used for clients to authenticate to
	servers. Because the KDC is considered
	trusted by all other computers in the
	Kerberos realm, it has heightened
	security concerns. Direct access to the KDC should be
	limited.
While running a KDC requires few
	computing resources, a dedicated machine acting only as a
	KDC is recommended for security
	reasons.
To begin, install the security/heimdal
	package as follows:
pkg install heimdal
Next, update /etc/rc.conf using
	sysrc as follows:
sysrc kdc_enable=yes
sysrc kadmind_enable=yes
Next, edit /etc/krb5.conf as
	follows:
[libdefaults]
 default_realm = EXAMPLE.ORG
[realms]
 EXAMPLE.ORG = {
	kdc = kerberos.example.org
	admin_server = kerberos.example.org
 }
[domain_realm]
 .example.org = EXAMPLE.ORG
In this example, the KDC will use the
	fully-qualified hostname kerberos.example.org. The
	hostname of the KDC must be resolvable in the
	DNS.
Kerberos can also use the
	DNS to locate KDCs, instead of a
	[realms] section in
	/etc/krb5.conf. For large organizations
	that have their own DNS servers, the above
	example could be trimmed to:
[libdefaults]
 default_realm = EXAMPLE.ORG
[domain_realm]
 .example.org = EXAMPLE.ORG
With the following lines being included in the
	example.org zone
	file:
_kerberos._udp IN SRV 01 00 88 kerberos.example.org.
_kerberos._tcp IN SRV 01 00 88 kerberos.example.org.
_kpasswd._udp IN SRV 01 00 464 kerberos.example.org.
_kerberos-adm._tcp IN SRV 01 00 749 kerberos.example.org.
_kerberos IN TXT EXAMPLE.ORG
Note:
In order for clients to be able to find the
	 Kerberos services, they
	 must have either
	 a fully configured /etc/krb5.conf or a
	 minimally configured /etc/krb5.conf
	 and a properly configured
	 DNS server.

Next, create the Kerberos
	database which contains the keys of all principals (users and
	hosts) encrypted with a master password. It is not required
	to remember this password as it will be stored in
	/var/heimdal/m-key; it would be
	reasonable to use a 45-character random password for this
	purpose. To create the master key, run
	kstash and enter a password:
kstash
Master key: xxxxxxxxxxxxxxxxxxxxxxx
Verifying password - Master key: xxxxxxxxxxxxxxxxxxxxxxx
Once the master key has been created, the database should
	be initialized. The Kerberos
	administrative tool kadmin(8) can be used on the KDC in a
	mode that operates directly on the database, without using the
	kadmind(8) network service, as
	kadmin -l. This resolves the
	chicken-and-egg problem of trying to connect to the database
	before it is created. At the kadmin
	prompt, use init to create the realm's
	initial database:
kadmin -l
kadmin> init EXAMPLE.ORG
Realm max ticket life [unlimited]:
Lastly, while still in kadmin, create
	the first principal using add. Stick to
	the default options for the principal for now, as these can be
	changed later with modify.
	Type ? at the prompt to see the available
	options.
kadmin> add tillman
Max ticket life [unlimited]:
Max renewable life [unlimited]:
Principal expiration time [never]:
Password expiration time [never]:
Attributes []:
Password: xxxxxxxx
Verifying password - Password: xxxxxxxx
Next, start the KDC services by
	running:
service kdc start
service kadmind start
While there will not be any kerberized daemons running at
	this point, it is possible to confirm that the
	KDC is functioning by obtaining a ticket
	for the principal that was just created:
% kinit tillman
tillman@EXAMPLE.ORG's Password:
Confirm that a ticket was successfully obtained using
	klist:
% klist
Credentials cache: FILE:/tmp/krb5cc_1001
	Principal: tillman@EXAMPLE.ORG

 Issued Expires Principal
Aug 27 15:37:58 2013 Aug 28 01:37:58 2013 krbtgt/EXAMPLE.ORG@EXAMPLE.ORG
The temporary ticket can be destroyed when the test is
	finished:
% kdestroy
13.5.2. Configuring a Server to Use
	Kerberos
The first step in configuring a server to use
	Kerberos authentication is to
	ensure that it has the correct configuration in
	/etc/krb5.conf. The version from the
	KDC can be used as-is, or it can be
	regenerated on the new system.
Next, create /etc/krb5.keytab on the
	server. This is the main part of “Kerberizing” a
	service — it corresponds to generating a secret shared
	between the service and the KDC. The
	secret is a cryptographic key, stored in a
	“keytab”. The keytab contains the server's host
	key, which allows it and the KDC to verify
	each others' identity. It must be transmitted to the server
	in a secure fashion, as the security of the server can be
	broken if the key is made public. Typically, the
	keytab is generated on an administrator's
	trusted machine using kadmin, then securely
	transferred to the server, e.g., with scp(1); it can also
	be created directly on the server if that is consistent with
	the desired security policy. It is very important that the
	keytab is transmitted to the server in a secure fashion: if
	the key is known by some other party, that party can
	impersonate any user to the server! Using
	kadmin on the server directly is
	convenient, because the entry for the host principal in the
	KDC database is also created using
	kadmin.
Of course, kadmin is a kerberized
	service; a Kerberos ticket is
	needed to authenticate to the network service, but to ensure
	that the user running kadmin is actually
	present (and their session has not been hijacked),
	kadmin will prompt for the password to get
	a fresh ticket. The principal authenticating to the kadmin
	service must be permitted to use the kadmin
	interface, as specified in
	/var/heimdal/kadmind.acl. See the
	section titled “Remote administration” in
	info heimdal for details on designing
	access control lists. Instead of enabling remote
	kadmin access, the administrator could
	securely connect to the KDC via the local
	console or ssh(1), and perform administration locally
	using kadmin -l.
After installing /etc/krb5.conf,
	use add --random-key in
	kadmin. This adds the server's host
	principal to the database, but does not extract a copy of the
	host principal key to a keytab. To generate the keytab, use
	ext to extract the server's host principal
	key to its own keytab:
kadmin
kadmin> add --random-key host/myserver.example.org
Max ticket life [unlimited]:
Max renewable life [unlimited]:
Principal expiration time [never]:
Password expiration time [never]:
Attributes []:
kadmin> ext_keytab host/myserver.example.org
kadmin> exit
Note that ext_keytab stores the
	extracted key in /etc/krb5.keytab by
	default. This is good when being run on the server being
	kerberized, but the --keytab
	 path/to/file argument
	should be used when the keytab is being extracted
	elsewhere:
kadmin
kadmin> ext_keytab --keytab=/tmp/example.keytab host/myserver.example.org
kadmin> exit
The keytab can then be securely copied to the server
	using scp(1) or a removable media. Be sure to specify a
	non-default keytab name to avoid inserting unneeded keys into
	the system's keytab.
At this point, the server can read encrypted messages from
	the KDC using its shared key, stored in
	krb5.keytab. It is now ready for the
	Kerberos-using services to be
	enabled. One of the most common such services is
	sshd(8), which supports
	Kerberos via the
	GSS-API. In
	/etc/ssh/sshd_config, add the
	line:
GSSAPIAuthentication yes
After making this change, sshd(8) must be restarted
	for the new configuration to take effect:
	service sshd restart.
13.5.3. Configuring a Client to Use
	Kerberos
As it was for the server, the client requires
	configuration in /etc/krb5.conf. Copy
	the file in place (securely) or re-enter it as needed.
Test the client by using kinit,
	klist, and kdestroy from
	the client to obtain, show, and then delete a ticket for an
	existing principal. Kerberos
	applications should also be able to connect to
	Kerberos enabled servers. If that
	does not work but obtaining a ticket does, the problem is
	likely with the server and not with the client or the
	KDC. In the case of kerberized
	ssh(1), GSS-API is disabled by
	default, so test using ssh -o
	 GSSAPIAuthentication=yes
	 hostname.
When testing a Kerberized application, try using a packet
	sniffer such as tcpdump to confirm that no
	sensitive information is sent in the clear.
Various Kerberos client
	applications are available. With the advent of a bridge so
	that applications using SASL for
	authentication can use GSS-API mechanisms
	as well, large classes of client applications can use
	Kerberos for authentication, from
	Jabber clients to IMAP clients.
Users within a realm typically have their
	Kerberos principal mapped to a
	local user account. Occasionally, one needs to grant access
	to a local user account to someone who does not have a
	matching Kerberos principal. For
	example, tillman@EXAMPLE.ORG may need
	access to the local user account webdevelopers. Other
	principals may also need access to that local account.
The .k5login and
	.k5users files, placed in a user's home
	directory, can be used to solve this problem. For example, if
	the following .k5login is placed in the
	home directory of webdevelopers, both principals
	listed will have access to that account without requiring a
	shared password:
tillman@example.org
jdoe@example.org
Refer to ksu(1) for more information about
	.k5users.
13.5.4. MIT Differences
The major difference between the MIT
	and Heimdal implementations is that kadmin
	has a different, but equivalent, set of commands and uses a
	different protocol. If the KDC is
	MIT, the Heimdal version of
	kadmin cannot be used to administer the
	KDC remotely, and vice versa.
Client applications may also use slightly different
	command line options to accomplish the same tasks. Following
	the instructions at http://web.mit.edu/Kerberos/www/
	is recommended. Be careful of path issues: the
	MIT port installs into
	/usr/local/ by default, and the FreeBSD
	system applications run instead of the
	MIT versions if PATH lists
	the system directories first.
When using MIT Kerberos as a KDC on
	FreeBSD, the following edits should also be made to
	rc.conf:
kdc_program="/usr/local/sbin/kdc"
kadmind_program="/usr/local/sbin/kadmind"
kdc_flags=""
kdc_enable="YES"
kadmind_enable="YES"
13.5.5. Kerberos Tips, Tricks, and
	Troubleshooting
When configuring and troubleshooting
	Kerberos, keep the following points
	in mind:
	When using either Heimdal or MIT
	 Kerberos from ports, ensure
	 that the PATH lists the port's versions of
	 the client applications before the system versions.

	If all the computers in the realm do not have
	 synchronized time settings, authentication may fail.
	 Section 29.11, “Clock Synchronization with NTP” describes how to synchronize
	 clocks using NTP.

	If the hostname is changed, the host/ principal must be
	 changed and the keytab updated. This also applies to
	 special keytab entries like the HTTP/ principal used for
	 Apache's www/mod_auth_kerb.

	All hosts in the realm must be both forward and
	 reverse resolvable in DNS or, at a
	 minimum, exist in /etc/hosts. CNAMEs
	 will work, but the A and PTR records must be correct and
	 in place. The error message for unresolvable hosts is not
	 intuitive: Kerberos5 refuses authentication
	 because Read req failed: Key table entry not
	 found.

	Some operating systems that act as clients to the
	 KDC do not set the permissions for
	 ksu to be setuid root. This means that
	 ksu does not work. This is a
	 permissions problem, not a KDC
	 error.

	With MIT
	 Kerberos, to allow a principal
	 to have a ticket life longer than the default lifetime of
	 ten hours, use modify_principal at the
	 kadmin(8) prompt to change the
	 maxlife of both the principal in
	 question and the
	 krbtgt
	 principal. The principal can then use
	 kinit -l to request a ticket with a
	 longer lifetime.

	When running a packet sniffer on the
	 KDC to aid in troubleshooting while
	 running kinit from a workstation, the
	 Ticket Granting Ticket (TGT) is sent
	 immediately, even before the password is typed. This is
	 because the Kerberos server
	 freely transmits a TGT to any
	 unauthorized request. However, every
	 TGT is encrypted in a key derived from
	 the user's password. When a user types their password, it
	 is not sent to the KDC, it is instead
	 used to decrypt the TGT that
	 kinit already obtained. If the
	 decryption process results in a valid ticket with a valid
	 time stamp, the user has valid
	 Kerberos credentials. These
	 credentials include a session key for establishing secure
	 communications with the
	 Kerberos server in the future,
	 as well as the actual TGT, which is
	 encrypted with the Kerberos
	 server's own key. This second layer of encryption allows
	 the Kerberos server to verify
	 the authenticity of each TGT.

	Host principals can have a longer ticket lifetime. If
	 the user principal has a lifetime of a week but the host
	 being connected to has a lifetime of nine hours, the user
	 cache will have an expired host principal and the ticket
	 cache will not work as expected.

	When setting up krb5.dict to
	 prevent specific bad passwords from being used as
	 described in kadmind(8), remember that it only
	 applies to principals that have a password policy assigned
	 to them. The format used in
	 krb5.dict is one string per line.
	 Creating a symbolic link to
	 /usr/share/dict/words might be
	 useful.

13.5.6. Mitigating Kerberos
	Limitations
Since Kerberos is an all or
	nothing approach, every service enabled on the network must
	either be modified to work with
	Kerberos or be otherwise secured
	against network attacks. This is to prevent user credentials
	from being stolen and re-used. An example is when
	Kerberos is enabled on all remote
	shells but the non-Kerberized POP3 mail
	server sends passwords in plain text.
The KDC is a single point of failure.
	By design, the KDC must be as secure as its
	master password database. The KDC should
	have absolutely no other services running on it and should be
	physically secure. The danger is high because
	Kerberos stores all passwords
	encrypted with the same master key which is stored as a file
	on the KDC.
A compromised master key is not quite as bad as one might
	fear. The master key is only used to encrypt the
	Kerberos database and as a seed for
	the random number generator. As long as access to the
	KDC is secure, an attacker cannot do much
	with the master key.
If the KDC is unavailable, network
	services are unusable as authentication cannot be performed.
	This can be alleviated with a single master
	KDC and one or more slaves, and with
	careful implementation of secondary or fall-back
	authentication using PAM.
Kerberos allows users, hosts
	and services to authenticate between themselves. It does not
	have a mechanism to authenticate the
	KDC to the users, hosts, or services. This
	means that a trojanned kinit could record
	all user names and passwords. File system integrity checking
	tools like security/tripwire can
	alleviate this.
13.5.7. Resources and Further Information
	
	 The Kerberos
	 FAQ

	Designing
	 an Authentication System: a Dialog in Four
	 Scenes

	RFC
	 4120, The Kerberos Network
	 Authentication Service (V5)

	MIT
	 Kerberos home
	 page

	Heimdal
	 Kerberos project wiki
	 page

21.8. FreeBSD as a Xen™-Host
Xen is a GPLv2-licensed type
	1 hypervisor for Intel® and ARM® architectures. FreeBSD
 has included i386™ and AMD® 64-Bit DomU
 and Amazon
	EC2 unprivileged domain (virtual machine) support since
 FreeBSD 8.0 and includes Dom0 control domain (host) support in
 FreeBSD 11.0. Support for para-virtualized (PV) domains has
 been removed from FreeBSD 11 in favor of hardware virtualized
 (HVM) domains, which provides better performance.
Xen™ is a bare-metal hypervisor, which means that it is the
 first program loaded after the BIOS. A special privileged guest
 called the Domain-0 (Dom0 for short) is then
 started. The Dom0 uses its special privileges to directly
 access the underlying physical hardware, making it a
 high-performance solution. It is able to access the disk
 controllers and network adapters directly. The Xen™ management
 tools to manage and control the Xen™ hypervisor are also used
 by the Dom0 to create, list, and destroy VMs. Dom0 provides
 virtual disks and networking for unprivileged domains, often
 called DomU. Xen™ Dom0 can be compared to
 the service console of other hypervisor solutions, while the
 DomU is where individual guest VMs are run.
Xen™ can migrate VMs between different Xen™ servers. When
 the two xen hosts share the same underlying storage, the
 migration can be done without having to shut the VM down first.
 Instead, the migration is performed live while the DomU is
 running and there is no need to restart it or plan a downtime.
 This is useful in maintenance scenarios or upgrade windows to
 ensure that the services provided by the DomU are still
 provided. Many more features of Xen™ are listed on the Xen
	Wiki Overview page. Note that not all features are
 supported on FreeBSD yet.
21.8.1. Hardware Requirements for Xen™ Dom0
To run the Xen™ hypervisor on a host, certain hardware
	functionality is required. Hardware virtualized domains
	require Extended Page Table (EPT)
	and Input/Output Memory Management Unit (IOMMU)
	support in the host processor.
Note:
In order to run a FreeBSD Xen™ Dom0 the box must be
	 booted using legacy boot (BIOS).

21.8.2. Xen™ Dom0 Control Domain Setup
Users of FreeBSD 11 should install the
	emulators/xen-kernel47 and
	sysutils/xen-tools47 packages that are
	based on Xen version 4.7. Systems running on FreeBSD-12.0 or
	newer can use Xen 4.11 provided by
	emulators/xen-kernel411 and
	sysutils/xen-tools411, respectively.
Configuration files must be edited to prepare the host
	for the Dom0 integration after the Xen packages are installed.
	An entry to /etc/sysctl.conf disables the
	limit on how many pages of memory are allowed to be wired.
	Otherwise, DomU VMs with higher memory requirements will not
	run.
echo 'vm.max_wired=-1' >> /etc/sysctl.conf
Another memory-related setting involves changing
	/etc/login.conf, setting the
	memorylocked option to
	unlimited. Otherwise, creating DomU
	domains may fail with Cannot allocate
	 memory errors. After making the change to
	/etc/login.conf, run
	cap_mkdb to update the capability database.
	See Section 13.13, “Resource Limits” for
	details.
sed -i '' -e 's/memorylocked=64K/memorylocked=unlimited/' /etc/login.conf
cap_mkdb /etc/login.conf
Add an entry for the Xen™ console to
	/etc/ttys:
echo 'xc0 "/usr/libexec/getty Pc" xterm onifconsole secure' >> /etc/ttys
Selecting a Xen™ kernel in
	/boot/loader.conf activates the Dom0.
	Xen™ also requires resources like CPU and memory from the
	host machine for itself and other DomU domains. How much CPU
	and memory depends on the individual requirements and hardware
	capabilities. In this example, 8 GB of memory and 4
	virtual CPUs are made available for the Dom0. The serial
	console is also activated and logging options are
	defined.
The following command is used for Xen 4.7 packages:
sysrc -f /boot/loader.conf hw.pci.mcfg=0
sysrc -f /boot/loader.conf if_tap_load="YES"
sysrc -f /boot/loader.conf xen_kernel="/boot/xen"
sysrc -f /boot/loader.conf xen_cmdline="dom0_mem=8192M dom0_max_vcpus=4 dom0pvh=1 console=com1,vga com1=115200,8n1 guest_loglvl=all loglvl=all"
For Xen versions 4.11 and higher, the following command
	should be used instead:
sysrc -f /boot/loader.conf if_tap_load="YES"
sysrc -f /boot/loader.conf xen_kernel="/boot/xen"
sysrc -f /boot/loader.conf xen_cmdline="dom0_mem=8192M dom0_max_vcpus=4 dom0=pvh console=com1,vga com1=115200,8n1 guest_loglvl=all loglvl=all"
Tip:
Log files that Xen™ creates for the DomU VMs
	 are stored in /var/log/xen. Please
	 be sure to check the contents of that directory if
	 experiencing issues.

Activate the xencommons service during system
	 startup:
sysrc xencommons_enable=yes
These settings are enough to start a Dom0-enabled
	 system. However, it lacks network functionality for the
	 DomU machines. To fix that, define a bridged interface with
	 the main NIC of the system which the DomU VMs can use to
	 connect to the network. Replace
	 em0 with the host network
	 interface name.
sysrc cloned_interfaces="bridge0"
sysrc ifconfig_bridge0="addm em0 SYNCDHCP"
sysrc ifconfig_em0="up"
Restart the host to load the Xen™ kernel and start the
	 Dom0.
reboot
After successfully booting the Xen™ kernel and logging
	 into the system again, the Xen™ management tool
	 xl is used to show information about the
	 domains.
xl list
Name ID Mem VCPUs State Time(s)
Domain-0 0 8192 4 r----- 962.0
The output confirms that the Dom0 (called
	 Domain-0) has the ID 0
	 and is running. It also has the memory and virtual CPUs
	 that were defined in /boot/loader.conf
	 earlier. More information can be found in the Xen™
	 Documentation. DomU guest VMs can now be
	 created.
21.8.3. Xen™ DomU Guest VM Configuration
Unprivileged domains consist of a configuration file and
	 virtual or physical hard disks. Virtual disk storage for
	 the DomU can be files created by truncate(1) or ZFS
	 volumes as described in Section 19.4.2, “Creating and Destroying Volumes”.
	 In this example, a 20 GB volume is used. A VM is
	 created with the ZFS volume, a FreeBSD ISO image, 1 GB of
	 RAM and two virtual CPUs. The ISO installation file is
	 retrieved with fetch(1) and saved locally in a file
	 called freebsd.iso.
fetch ftp://ftp.freebsd.org/pub/FreeBSD/releases/ISO-IMAGES/12.0/FreeBSD-12.0-RELEASE-amd64-bootonly.iso -o freebsd.iso
A ZFS volume of 20 GB called
	xendisk0 is created to serve as the disk
	space for the VM.
zfs create -V20G -o volmode=dev zroot/xendisk0
The new DomU guest VM is defined in a file. Some specific
	definitions like name, keymap, and VNC connection details are
	also defined. The following freebsd.cfg
	contains a minimum DomU configuration for this example:
cat freebsd.cfg
builder = "hvm" [image: 1]
name = "freebsd" [image: 2]
memory = 1024 [image: 3]
vcpus = 2 [image: 4]
vif = ['mac=00:16:3E:74:34:32,bridge=bridge0'] [image: 5]
disk = [
'/dev/zvol/tank/xendisk0,raw,hda,rw', [image: 6]
'/root/freebsd.iso,raw,hdc:cdrom,r' [image: 7]
]
vnc = 1 [image: 8]
vnclisten = "0.0.0.0"
serial = "pty"
usbdevice = "tablet"
These lines are explained in more detail:
	[image: 1]
	This defines what kind of virtualization to use.
	 hvm refers to hardware-assisted
	 virtualization or hardware virtual machine. Guest
	 operating systems can run unmodified on CPUs with
	 virtualization extensions, providing nearly the same
	 performance as running on physical hardware.
	 generic is the default value and
	 creates a PV domain.

	[image: 2]
	Name of this virtual machine to distinguish it from
	 others running on the same Dom0. Required.

	[image: 3]
	Quantity of RAM in megabytes to make available to the
	 VM. This amount is subtracted from the hypervisor's total
	 available memory, not the memory of the Dom0.

	[image: 4]
	Number of virtual CPUs available to the guest VM. For
	 best performance, do not create guests with more virtual
	 CPUs than the number of physical CPUs on the host.

	[image: 5]
	Virtual network adapter. This is the bridge connected
	 to the network interface of the host. The
	 mac parameter is the MAC address set on
	 the virtual network interface. This parameter is
	 optional, if no MAC is provided Xen™ will generate a
	 random one.

	[image: 6]
	Full path to the disk, file, or ZFS volume of the disk
	 storage for this VM. Options and multiple disk
	 definitions are separated by commas.

	[image: 7]
	Defines the Boot medium from which the initial
	 operating system is installed. In this example, it is the
	 ISO imaged downloaded earlier. Consult the Xen™
	 documentation for other kinds of devices and options to
	 set.

	[image: 8]
	Options controlling VNC connectivity to the serial
	 console of the DomU. In order, these are: active VNC
	 support, define IP address on which to listen, device node
	 for the serial console, and the input method for precise
	 positioning of the mouse and other input methods.
	 keymap defines which keymap to use, and
	 is english by default.

After the file has been created with all the necessary
	options, the DomU is created by passing it to xl
	 create as a parameter.
xl create freebsd.cfg
Note:
Each time the Dom0 is restarted, the configuration file
	 must be passed to xl create again to
	 re-create the DomU. By default, only the Dom0 is created
	 after a reboot, not the individual VMs. The VMs can
	 continue where they left off as they stored the operating
	 system on the virtual disk. The virtual machine
	 configuration can change over time (for example, when adding
	 more memory). The virtual machine configuration files must
	 be properly backed up and kept available to be able to
	 re-create the guest VM when needed.

The output of xl list confirms that the
	DomU has been created.
xl list
Name ID Mem VCPUs State Time(s)
Domain-0 0 8192 4 r----- 1653.4
freebsd 1 1024 1 -b---- 663.9
To begin the installation of the base operating system,
	start the VNC client, directing it to the main network address
	of the host or to the IP address defined on the
	vnclisten line of
	freebsd.cfg. After the operating system
	has been installed, shut down the DomU and disconnect the VNC
	viewer. Edit freebsd.cfg, removing the
	line with the cdrom definition or
	commenting it out by inserting a #
	character at the beginning of the line. To load this new
	configuration, it is necessary to remove the old DomU with
	xl destroy, passing either the name or the
	id as the parameter. Afterwards, recreate it using the
	modified freebsd.cfg.
xl destroy freebsd
xl create freebsd.cfg
The machine can then be accessed again using the VNC
	viewer. This time, it will boot from the virtual disk where
	the operating system has been installed and can be used as a
	virtual machine.
21.8.4. Troubleshooting
This section contains basic information in order to help
	troubleshoot issues found when using FreeBSD as a Xen™ host or
	guest.
21.8.4.1. Host Boot Troubleshooting
Please note that the following troubleshooting tips
	 are intended for Xen™ 4.11 or newer. If you are still
	 using Xen™ 4.7 and having issues consider migrating to
	 a newer version of Xen™.
In order to troubleshoot host boot issues you will
	 likely need a serial cable, or a debug USB cable. Verbose
	 Xen™ boot output can be obtained by adding options to the
	 xen_cmdline option found in
	 loader.conf. A couple of relevant
	 debug options are:
	iommu=debug: can be used to print
	 additional diagnostic information about the
	 iommu.

	dom0=verbose: can be used to
	 print additional diagnostic information about the
	 dom0 build process.

	sync_console: flag to force
	 synchronous console output. Useful for debugging to
	 avoid losing messages due to rate limiting.
	 Never use this option in production environments since
	 it can allow malicious guests to perform DoS attacks
	 against Xen™ using the console.

FreeBSD should also be booted in verbose mode in order
	 to identify any issues. To activate verbose booting, run
	 this command:
sysrc -f /boot/loader.conf boot_verbose="YES"
If none of these options help solving the problem,
	 please send the serial boot log to
	 <freebsd-xen@FreeBSD.org> and
	 <xen-devel@lists.xenproject.org>
	 for further analysis.
21.8.4.2. Guest Creation Troubleshooting
Issues can also arise when creating guests, the
	 following attempts to provide some help for those trying
	 to diagnose guest creation issues.
The most common cause of guest creation failures is the
	 xl command spitting some error and
	 exiting with a return code different than 0. If the error
	 provided is not enough to help identify the issue, more
	 verbose output can also be obtained from
	 xl by using the v
	 option repeatedly.
xl -vvv create freebsd.cfg
Parsing config from freebsd.cfg
libxl: debug: libxl_create.c:1693:do_domain_create: Domain 0:ao 0x800d750a0: create: how=0x0 callback=0x0 poller=0x800d6f0f0
libxl: debug: libxl_device.c:397:libxl__device_disk_set_backend: Disk vdev=xvda spec.backend=unknown
libxl: debug: libxl_device.c:432:libxl__device_disk_set_backend: Disk vdev=xvda, using backend phy
libxl: debug: libxl_create.c:1018:initiate_domain_create: Domain 1:running bootloader
libxl: debug: libxl_bootloader.c:328:libxl__bootloader_run: Domain 1:not a PV/PVH domain, skipping bootloader
libxl: debug: libxl_event.c:689:libxl__ev_xswatch_deregister: watch w=0x800d96b98: deregister unregistered
domainbuilder: detail: xc_dom_allocate: cmdline="", features=""
domainbuilder: detail: xc_dom_kernel_file: filename="/usr/local/lib/xen/boot/hvmloader"
domainbuilder: detail: xc_dom_malloc_filemap : 326 kB
libxl: debug: libxl_dom.c:988:libxl__load_hvm_firmware_module: Loading BIOS: /usr/local/share/seabios/bios.bin
...
If the verbose output does not help diagnose the issue
	 there are also QEMU and Xen™ toolstack logs in
	 /var/log/xen. Note that the name of
	 the domain is appended to the log name, so if the domain
	 is named freebsd you should find a
	 /var/log/xen/xl-freebsd.log and likely
	 a /var/log/xen/qemu-dm-freebsd.log.
	 Both log files can contain useful information for debugging.
	 If none of this helps solve the issue, please send the
	 description of the issue you are facing and as much
	 information as possible to
	 <freebsd-xen@FreeBSD.org> and
	 <xen-devel@lists.xenproject.org> in order to
	 get help.
29.3. Network File System (NFS)
Reorganized and enhanced by Tom Rhodes. Written by Bill Swingle. FreeBSD supports the Network File System
 (NFS), which allows a server to share
 directories and files with clients over a network. With
 NFS, users and programs can access files on
 remote systems as if they were stored locally.
NFS has many practical uses. Some of
 the more common uses include:
	Data that would otherwise be duplicated on each client
	 can be kept in a single location and accessed by clients
	 on the network.

	Several clients may need access to the
	 /usr/ports/distfiles directory.
	 Sharing that directory allows for quick access to the
	 source files without having to download them to each
	 client.

	On large networks, it is often more convenient to
	 configure a central NFS server on which
	 all user home directories are stored. Users can log into
	 a client anywhere on the network and have access to their
	 home directories.

	Administration of NFS exports is
	 simplified. For example, there is only one file system
	 where security or backup policies must be set.

	Removable media storage devices can be used by other
	 machines on the network. This reduces the number of devices
	 throughout the network and provides a centralized location
	 to manage their security. It is often more convenient to
	 install software on multiple machines from a centralized
	 installation media.

NFS consists of a server and one or more
 clients. The client remotely accesses the data that is stored
 on the server machine. In order for this to function properly,
 a few processes have to be configured and running.
These daemons must be running on the server:
	Daemon	Description
	nfsd	The NFS daemon which services
		requests from NFS clients.
	mountd	The NFS mount daemon which
		carries out requests received from
		nfsd.
	rpcbind	 This daemon allows NFS
		clients to discover which port the
		NFS server is using.

Running nfsiod(8) on the client can improve
	performance, but is not required.
29.3.1. Configuring the Server
The file systems which the NFS server
	will share are specified in /etc/exports.
	Each line in this file specifies a file system to be exported,
	which clients have access to that file system, and any access
	options. When adding entries to this file, each exported file
	system, its properties, and allowed hosts must occur on a
	single line. If no clients are listed in the entry, then any
	client on the network can mount that file system.
The following /etc/exports entries
	demonstrate how to export file systems. The examples can be
	modified to match the file systems and client names on the
	reader's network. There are many options that can be used in
	this file, but only a few will be mentioned here. See
	exports(5) for the full list of options.
This example shows how to export
	/cdrom to three hosts named
	alpha,
	bravo, and
	charlie:
/cdrom -ro alpha bravo charlie
The -ro flag makes the file system
	read-only, preventing clients from making any changes to the
	exported file system. This example assumes that the host
	names are either in DNS or in
	/etc/hosts. Refer to hosts(5) if
	the network does not have a DNS
	server.
The next example exports /home to
	three clients by IP address. This can be
	useful for networks without DNS or
	/etc/hosts entries. The
	-alldirs flag allows subdirectories to be
	mount points. In other words, it will not automatically mount
	the subdirectories, but will permit the client to mount the
	directories that are required as needed.
/usr/home -alldirs 10.0.0.2 10.0.0.3 10.0.0.4
This next example exports /a so that
	two clients from different domains may access that file
	system. The -maproot=root allows root on the remote system to
	write data on the exported file system as root. If
	-maproot=root is not specified, the
	client's root user
	will be mapped to the server's nobody account and will be
	subject to the access limitations defined for nobody.
/a -maproot=root host.example.com box.example.org
A client can only be specified once per file system. For
	example, if /usr is a single file system,
	these entries would be invalid as both entries specify the
	same host:
Invalid when /usr is one file system
/usr/src client
/usr/ports client
The correct format for this situation is to use one
	entry:
/usr/src /usr/ports client
The following is an example of a valid export list, where
	/usr and /exports
	are local file systems:
Export src and ports to client01 and client02, but only
client01 has root privileges on it
/usr/src /usr/ports -maproot=root client01
/usr/src /usr/ports client02
The client machines have root and can mount anywhere
on /exports. Anyone in the world can mount /exports/obj read-only
/exports -alldirs -maproot=root client01 client02
/exports/obj -ro
To enable the processes required by the
	NFS server at boot time, add these options
	to /etc/rc.conf:
rpcbind_enable="YES"
nfs_server_enable="YES"
mountd_enable="YES"
The server can be started now by running this
	command:
service nfsd start
Whenever the NFS server is started,
	mountd also starts automatically.
	However, mountd only reads
	/etc/exports when it is started. To make
	subsequent /etc/exports edits take effect
	immediately, force mountd to reread
	it:
service mountd reload
29.3.2. Configuring the Client
To enable NFS clients, set this option
	in each client's /etc/rc.conf:
nfs_client_enable="YES"
Then, run this command on each NFS
	client:
service nfsclient start
The client now has everything it needs to mount a remote
	file system. In these examples, the server's name is
	server and the client's name is
	client. To mount
	/home on
	server to the
	/mnt mount point on
	client:
mount server:/home /mnt
The files and directories in
	/home will now be available on
	client, in the
	/mnt directory.
To mount a remote file system each time the client boots,
	add it to /etc/fstab:
server:/home	/mnt	nfs	rw	0	0
Refer to fstab(5) for a description of all available
	options.
29.3.3. Locking
Some applications require file locking to operate
	correctly. To enable locking, add these lines to
	/etc/rc.conf on both the client and
	server:
rpc_lockd_enable="YES"
rpc_statd_enable="YES"
Then start the applications:
service lockd start
service statd start
If locking is not required on the server, the
	NFS client can be configured to lock
	locally by including -L when running
	mount. Refer to mount_nfs(8)
	for further details.
29.3.4. Automating Mounts with autofs(5)
Note:
The autofs(5) automount facility is supported
	 starting with FreeBSD 10.1-RELEASE. To use the
	 automounter functionality in older versions of FreeBSD, use
	 amd(8) instead. This chapter only describes the
	 autofs(5) automounter.

The autofs(5) facility is a common name for several
	components that, together, allow for automatic mounting of
	remote and local filesystems whenever a file or directory
	within that file system is accessed. It consists of the
	kernel component, autofs(5), and several userspace
	applications: automount(8), automountd(8) and
	autounmountd(8). It serves as an alternative for
	amd(8) from previous FreeBSD releases. Amd is still
	provided for backward compatibility purposes, as the two use
	different map format; the one used by autofs is the same as
	with other SVR4 automounters, such as the ones in Solaris,
	MacOS X, and Linux.
The autofs(5) virtual filesystem is mounted on
	specified mountpoints by automount(8), usually invoked
	during boot.
Whenever a process attempts to access file within the
	autofs(5) mountpoint, the kernel will notify
	automountd(8) daemon and pause the triggering process.
	The automountd(8) daemon will handle kernel requests by
	finding the proper map and mounting the filesystem according
	to it, then signal the kernel to release blocked process. The
	autounmountd(8) daemon automatically unmounts automounted
	filesystems after some time, unless they are still being
	used.
The primary autofs configuration file is
	/etc/auto_master. It assigns individual
	maps to top-level mounts. For an explanation of
	auto_master and the map syntax, refer to
	auto_master(5).
There is a special automounter map mounted on
	/net. When a file is accessed within
	this directory, autofs(5) looks up the corresponding
	remote mount and automatically mounts it. For instance, an
	attempt to access a file within
	/net/foobar/usr would tell
	automountd(8) to mount the /usr export from the host
	foobar.
Example 29.2. Mounting an Export with autofs(5)
In this example, showmount -e shows
	 the exported file systems that can be mounted from the
	 NFS server,
	 foobar:
% showmount -e foobar
Exports list on foobar:
/usr 10.10.10.0
/a 10.10.10.0
% cd /net/foobar/usr

The output from showmount shows
	/usr as an export.
	When changing directories to /host/foobar/usr,
	automountd(8) intercepts the request and attempts to
	resolve the hostname foobar. If successful,
	automountd(8) automatically mounts the source
	export.
To enable autofs(5) at boot time, add this line to
	/etc/rc.conf:
autofs_enable="YES"
Then autofs(5) can be started by running:
service automount start
service automountd start
service autounmountd start
The autofs(5) map format is the same as in other
	operating systems. Information about this format from other
	sources can be useful, like the Mac
	 OS X document.
Consult the automount(8), automountd(8),
	autounmountd(8), and auto_master(5) manual pages for
	more information.
11.8. Configuration Files
11.8.1. /etc
	Layout
There are a number of directories in which configuration
	information is kept. These include:
	/etc	Generic system-specific configuration
		information.
	/etc/defaults	Default versions of system configuration
		files.
	/etc/mail	Extra sendmail(8) configuration and other
		MTA configuration files.
	/etc/ppp	Configuration for both user- and kernel-ppp
		programs.
	/usr/local/etc	Configuration files for installed applications.
		May contain per-application subdirectories.
	/usr/local/etc/rc.d	rc(8) scripts for installed
		applications.
	/var/db	Automatically generated system-specific database
		files, such as the package database and the
		locate(1) database.

11.8.2. Hostnames
11.8.2.1. /etc/resolv.conf
How a FreeBSD system accesses the Internet Domain Name
	 System (DNS) is controlled by
	 resolv.conf(5).
The most common entries to
	 /etc/resolv.conf are:
	nameserver	The IP address of a name
		 server the resolver should query. The servers are
		 queried in the order listed with a maximum of
		 three.
	search	Search list for hostname lookup. This is
		 normally determined by the domain of the local
		 hostname.
	domain	The local domain name.

A typical /etc/resolv.conf looks
	 like this:
search example.com
nameserver 147.11.1.11
nameserver 147.11.100.30
Note:
Only one of the search and
	 domain options should be used.

When using DHCP, dhclient(8)
	 usually rewrites /etc/resolv.conf
	 with information received from the DHCP
	 server.
11.8.2.2. /etc/hosts
/etc/hosts is a simple text
	 database which works in conjunction with
	 DNS and
	 NIS to provide host name to
	 IP address mappings. Entries for local
	 computers connected via a LAN can be
	 added to this file for simplistic naming purposes instead
	 of setting up a named(8) server. Additionally,
	 /etc/hosts can be used to provide a
	 local record of Internet names, reducing the need to query
	 external DNS servers for commonly
	 accessed names.
$FreeBSD$
#
#
Host Database
#
This file should contain the addresses and aliases for local hosts that
share this file. Replace 'my.domain' below with the domainname of your
machine.
#
In the presence of the domain name service or NIS, this file may
not be consulted at all; see /etc/nsswitch.conf for the resolution order.
#
#
::1			localhost localhost.my.domain
127.0.0.1		localhost localhost.my.domain
#
Imaginary network.
#10.0.0.2		myname.my.domain myname
#10.0.0.3		myfriend.my.domain myfriend
#
According to RFC 1918, you can use the following IP networks for
private nets which will never be connected to the Internet:
#
#	10.0.0.0	- 10.255.255.255
#	172.16.0.0	- 172.31.255.255
#	192.168.0.0	- 192.168.255.255
#
In case you want to be able to connect to the Internet, you need
real official assigned numbers. Do not try to invent your own network
numbers but instead get one from your network provider (if any) or
from your regional registry (ARIN, APNIC, LACNIC, RIPE NCC, or AfriNIC.)
#
The format of /etc/hosts is as
	 follows:
[Internet address] [official hostname] [alias1] [alias2] ...
For example:
10.0.0.1 myRealHostname.example.com myRealHostname foobar1 foobar2
Consult hosts(5) for more information.
31.6. Bridging
Written by Andrew Thompson. It is sometimes useful to divide a network, such as an
 Ethernet segment, into network segments without having to
 create IP subnets and use a router to connect
 the segments together. A device that connects two networks
 together in this fashion is called a
 “bridge”.
A bridge works by learning the MAC
 addresses of the devices on each of its network interfaces. It
 forwards traffic between networks only when the source and
 destination MAC addresses are on different
 networks. In many respects, a bridge is like an Ethernet switch
 with very few ports. A FreeBSD system with multiple network
 interfaces can be configured to act as a bridge.
Bridging can be useful in the following situations:
	Connecting Networks
	The basic operation of a bridge is to join two or more
	 network segments. There are many reasons to use a
	 host-based bridge instead of networking equipment, such as
	 cabling constraints or firewalling. A bridge can also
	 connect a wireless interface running in hostap mode to a
	 wired network and act as an access point.

	Filtering/Traffic Shaping Firewall
	A bridge can be used when firewall functionality is
	 needed without routing or Network Address Translation
	 (NAT).
An example is a small company that is connected via
	 DSL or ISDN to an
	 ISP. There are thirteen public
	 IP addresses from the
	 ISP and ten computers on the network.
	 In this situation, using a router-based firewall is
	 difficult because of subnetting issues. A bridge-based
	 firewall can be configured without any
	 IP addressing issues.

	Network Tap
	A bridge can join two network segments in order to
	 inspect all Ethernet frames that pass between them using
	 bpf(4) and tcpdump(1) on the bridge interface or
	 by sending a copy of all frames out an additional
	 interface known as a span port.

	Layer 2 VPN
	Two Ethernet networks can be joined across an
	 IP link by bridging the networks to an
	 EtherIP tunnel or a tap(4) based solution such as
	 OpenVPN.

	Layer 2 Redundancy
	A network can be connected together with multiple
	 links and use the Spanning Tree Protocol
	 (STP) to block redundant paths.

This section describes how to configure a FreeBSD system as a
 bridge using if_bridge(4). A netgraph bridging driver is
 also available, and is described in ng_bridge(4).
Note:
Packet filtering can be used with any firewall package
	that hooks into the pfil(9) framework. The bridge can be
	used as a traffic shaper with altq(4) or
	dummynet(4).

31.6.1. Enabling the Bridge
In FreeBSD, if_bridge(4) is a kernel module which is
	automatically loaded by ifconfig(8) when creating a
	bridge interface. It is also possible to compile bridge
	support into a custom kernel by adding
	device if_bridge to the custom kernel
	configuration file.
The bridge is created using interface cloning. To create
	the bridge interface:
ifconfig bridge create
bridge0
ifconfig bridge0
bridge0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500
 ether 96:3d:4b:f1:79:7a
 id 00:00:00:00:00:00 priority 32768 hellotime 2 fwddelay 15
 maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200
 root id 00:00:00:00:00:00 priority 0 ifcost 0 port 0
When a bridge interface is created, it is automatically
	assigned a randomly generated Ethernet address. The
	maxaddr and timeout
	parameters control how many MAC addresses
	the bridge will keep in its forwarding table and how many
	seconds before each entry is removed after it is last seen.
	The other parameters control how STP
	operates.
Next, specify which network interfaces to add as members
	of the bridge. For the bridge to forward packets, all member
	interfaces and the bridge need to be up:
ifconfig bridge0 addm fxp0 addm fxp1 up
ifconfig fxp0 up
ifconfig fxp1 up
The bridge can now forward Ethernet frames between
	fxp0 and fxp1. Add
	the following lines to /etc/rc.conf so
	the bridge is created at startup:
cloned_interfaces="bridge0"
ifconfig_bridge0="addm fxp0 addm fxp1 up"
ifconfig_fxp0="up"
ifconfig_fxp1="up"
If the bridge host needs an IP
	address, set it on the bridge interface, not on the member
	interfaces. The address can be set statically or via
	DHCP. This example sets a static
	IP address:
ifconfig bridge0 inet 192.168.0.1/24
It is also possible to assign an IPv6
	address to a bridge interface. To make the changes permanent,
	add the addressing information to
	/etc/rc.conf.
Note:
When packet filtering is enabled, bridged packets will
	 pass through the filter inbound on the originating interface
	 on the bridge interface, and outbound on the appropriate
	 interfaces. Either stage can be disabled. When direction
	 of the packet flow is important, it is best to firewall on
	 the member interfaces rather than the bridge itself.
The bridge has several configurable settings for passing
	 non-IP and IP packets,
	 and layer2 firewalling with ipfw(8). See
	 if_bridge(4) for more information.

31.6.2. Enabling Spanning Tree
For an Ethernet network to function properly, only one
	active path can exist between two devices. The
	STP protocol detects loops and puts
	redundant links into a blocked state. Should one of the
	active links fail, STP calculates a
	different tree and enables one of the blocked paths to restore
	connectivity to all points in the network.
The Rapid Spanning Tree Protocol (RSTP
	or 802.1w) provides backwards compatibility with legacy
	STP. RSTP provides
	faster convergence and exchanges information with neighboring
	switches to quickly transition to forwarding mode without
	creating loops. FreeBSD supports RSTP and
	STP as operating modes, with
	RSTP being the default mode.
STP can be enabled on member interfaces
	using ifconfig(8). For a bridge with
	fxp0 and fxp1 as the
	current interfaces, enable STP with:
ifconfig bridge0 stp fxp0 stp fxp1
bridge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
 ether d6:cf:d5:a0:94:6d
 id 00:01:02:4b:d4:50 priority 32768 hellotime 2 fwddelay 15
 maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200
 root id 00:01:02:4b:d4:50 priority 32768 ifcost 0 port 0
 member: fxp0 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP>
 port 3 priority 128 path cost 200000 proto rstp
 role designated state forwarding
 member: fxp1 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP>
 port 4 priority 128 path cost 200000 proto rstp
 role designated state forwarding
This bridge has a spanning tree ID of
	00:01:02:4b:d4:50 and a priority of
	32768. As the root id
	is the same, it indicates that this is the root bridge for the
	tree.
Another bridge on the network also has
	STP enabled:
bridge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
 ether 96:3d:4b:f1:79:7a
 id 00:13:d4:9a:06:7a priority 32768 hellotime 2 fwddelay 15
 maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200
 root id 00:01:02:4b:d4:50 priority 32768 ifcost 400000 port 4
 member: fxp0 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP>
 port 4 priority 128 path cost 200000 proto rstp
 role root state forwarding
 member: fxp1 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP>
 port 5 priority 128 path cost 200000 proto rstp
 role designated state forwarding
The line root id 00:01:02:4b:d4:50 priority 32768
	 ifcost 400000 port 4 shows that the root bridge is
	00:01:02:4b:d4:50 and has a path cost of
	400000 from this bridge. The path to the
	root bridge is via port 4 which is
	fxp0.
31.6.3. Bridge Interface Parameters
Several ifconfig parameters are unique
	to bridge interfaces. This section summarizes some common
	uses for these parameters. The complete list of available
	parameters is described in ifconfig(8).
	private
	A private interface does not forward any traffic to
	 any other port that is also designated as a private
	 interface. The traffic is blocked unconditionally so no
	 Ethernet frames will be forwarded, including
	 ARP packets. If traffic needs to be
	 selectively blocked, a firewall should be used
	 instead.

	span
	A span port transmits a copy of every Ethernet frame
	 received by the bridge. The number of span ports
	 configured on a bridge is unlimited, but if an
	 interface is designated as a span port, it cannot also
	 be used as a regular bridge port. This is most useful
	 for snooping a bridged network passively on another host
	 connected to one of the span ports of the bridge. For
	 example, to send a copy of all frames out the interface
	 named fxp4:
ifconfig bridge0 span fxp4

	sticky
	If a bridge member interface is marked as sticky,
	 dynamically learned address entries are treated as
	 static entries in the forwarding cache. Sticky entries
	 are never aged out of the cache or replaced, even if the
	 address is seen on a different interface. This gives
	 the benefit of static address entries without the need
	 to pre-populate the forwarding table. Clients learned
	 on a particular segment of the bridge cannot roam to
	 another segment.
An example of using sticky addresses is to combine
	 the bridge with VLANs in order to
	 isolate customer networks without wasting
	 IP address space. Consider that
	 CustomerA
	 is on vlan100, CustomerB is on
	 vlan101, and the bridge has the
	 address 192.168.0.1:
ifconfig bridge0 addm vlan100 sticky vlan100 addm vlan101 sticky vlan101
ifconfig bridge0 inet 192.168.0.1/24
In this example, both clients see 192.168.0.1 as their
	 default gateway. Since the bridge cache is sticky, one
	 host cannot spoof the MAC address of
	 the other customer in order to intercept their
	 traffic.
Any communication between the
	 VLANs can be blocked using a firewall
	 or, as seen in this example, private interfaces:
ifconfig bridge0 private vlan100 private vlan101
The customers are completely isolated from each
	 other and the full /24 address range can be
	 allocated without subnetting.
The number of unique source MAC
	 addresses behind an interface can be limited. Once the
	 limit is reached, packets with unknown source addresses
	 are dropped until an existing host cache entry expires
	 or is removed.
The following example sets the maximum number of
	 Ethernet devices for CustomerA on
	 vlan100 to 10:
ifconfig bridge0 ifmaxaddr vlan100 10

Bridge interfaces also support monitor mode, where the
	packets are discarded after bpf(4) processing and are not
	processed or forwarded further. This can be used to
	multiplex the input of two or more interfaces into a single
	bpf(4) stream. This is useful for reconstructing the
	traffic for network taps that transmit the RX/TX signals out
	through two separate interfaces. For example, to read the
	input from four network interfaces as one stream:
ifconfig bridge0 addm fxp0 addm fxp1 addm fxp2 addm fxp3 monitor up
tcpdump -i bridge0
31.6.4. SNMP Monitoring
The bridge interface and STP
	parameters can be monitored via bsnmpd(1) which is
	included in the FreeBSD base system. The exported bridge
	MIBs conform to IETF
	standards so any SNMP client or monitoring
	package can be used to retrieve the data.
To enable monitoring on the bridge, uncomment this line in
	/etc/snmpd.config by removing the
	beginning # symbol:
begemotSnmpdModulePath."bridge" = "/usr/lib/snmp_bridge.so"
Other configuration settings, such as community names and
	access lists, may need to be modified in this file. See
	bsnmpd(1) and snmp_bridge(3) for more information.
	Once these edits are saved, add this line to
	/etc/rc.conf:
bsnmpd_enable="YES"
Then, start bsnmpd(1):
service bsnmpd start
The following examples use the
	Net-SNMP software
	(net-mgmt/net-snmp) to query a bridge
	from a client system. The
	net-mgmt/bsnmptools port can also be used.
	From the SNMP client which is running
	Net-SNMP, add the following lines
	to $HOME/.snmp/snmp.conf in order to
	import the bridge MIB definitions:
mibdirs +/usr/share/snmp/mibs
mibs +BRIDGE-MIB:RSTP-MIB:BEGEMOT-MIB:BEGEMOT-BRIDGE-MIB
To monitor a single bridge using the IETF BRIDGE-MIB
	(RFC4188):
% snmpwalk -v 2c -c public bridge1.example.com mib-2.dot1dBridge
BRIDGE-MIB::dot1dBaseBridgeAddress.0 = STRING: 66:fb:9b:6e:5c:44
BRIDGE-MIB::dot1dBaseNumPorts.0 = INTEGER: 1 ports
BRIDGE-MIB::dot1dStpTimeSinceTopologyChange.0 = Timeticks: (189959) 0:31:39.59 centi-seconds
BRIDGE-MIB::dot1dStpTopChanges.0 = Counter32: 2
BRIDGE-MIB::dot1dStpDesignatedRoot.0 = Hex-STRING: 80 00 00 01 02 4B D4 50
...
BRIDGE-MIB::dot1dStpPortState.3 = INTEGER: forwarding(5)
BRIDGE-MIB::dot1dStpPortEnable.3 = INTEGER: enabled(1)
BRIDGE-MIB::dot1dStpPortPathCost.3 = INTEGER: 200000
BRIDGE-MIB::dot1dStpPortDesignatedRoot.3 = Hex-STRING: 80 00 00 01 02 4B D4 50
BRIDGE-MIB::dot1dStpPortDesignatedCost.3 = INTEGER: 0
BRIDGE-MIB::dot1dStpPortDesignatedBridge.3 = Hex-STRING: 80 00 00 01 02 4B D4 50
BRIDGE-MIB::dot1dStpPortDesignatedPort.3 = Hex-STRING: 03 80
BRIDGE-MIB::dot1dStpPortForwardTransitions.3 = Counter32: 1
RSTP-MIB::dot1dStpVersion.0 = INTEGER: rstp(2)
The dot1dStpTopChanges.0 value is two,
	indicating that the STP bridge topology has
	changed twice. A topology change means that one or more links
	in the network have changed or failed and a new tree has been
	calculated. The
	dot1dStpTimeSinceTopologyChange.0 value
	will show when this happened.
To monitor multiple bridge interfaces, the private
	BEGEMOT-BRIDGE-MIB can be used:
% snmpwalk -v 2c -c public bridge1.example.com
enterprises.fokus.begemot.begemotBridge
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseName."bridge0" = STRING: bridge0
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseName."bridge2" = STRING: bridge2
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseAddress."bridge0" = STRING: e:ce:3b:5a:9e:13
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseAddress."bridge2" = STRING: 12:5e:4d:74:d:fc
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseNumPorts."bridge0" = INTEGER: 1
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseNumPorts."bridge2" = INTEGER: 1
...
BEGEMOT-BRIDGE-MIB::begemotBridgeStpTimeSinceTopologyChange."bridge0" = Timeticks: (116927) 0:19:29.27 centi-seconds
BEGEMOT-BRIDGE-MIB::begemotBridgeStpTimeSinceTopologyChange."bridge2" = Timeticks: (82773) 0:13:47.73 centi-seconds
BEGEMOT-BRIDGE-MIB::begemotBridgeStpTopChanges."bridge0" = Counter32: 1
BEGEMOT-BRIDGE-MIB::begemotBridgeStpTopChanges."bridge2" = Counter32: 1
BEGEMOT-BRIDGE-MIB::begemotBridgeStpDesignatedRoot."bridge0" = Hex-STRING: 80 00 00 40 95 30 5E 31
BEGEMOT-BRIDGE-MIB::begemotBridgeStpDesignatedRoot."bridge2" = Hex-STRING: 80 00 00 50 8B B8 C6 A9
To change the bridge interface being monitored via the
	mib-2.dot1dBridge subtree:
% snmpset -v 2c -c private bridge1.example.com
BEGEMOT-BRIDGE-MIB::begemotBridgeDefaultBridgeIf.0 s bridge2
Chapter 11. Configuration and Tuning
Written by Chern Lee. Based on a tutorial written by Mike Smith. Also based on tuning(7) written by Matt Dillon. 11.1. Synopsis
One of the important aspects of FreeBSD is proper system
 configuration. This chapter explains much of the FreeBSD
 configuration process, including some of the parameters which
 can be set to tune a FreeBSD system.
After reading this chapter, you will know:
	The basics of rc.conf configuration
	 and /usr/local/etc/rc.d startup
	 scripts.

	How to configure and test a network card.

	How to configure virtual hosts on network
	 devices.

	How to use the various configuration files in
	 /etc.

	How to tune FreeBSD using sysctl(8) variables.

	How to tune disk performance and modify kernel
	 limitations.

Before reading this chapter, you should:
	Understand UNIX® and FreeBSD basics
	 (Chapter 3, FreeBSD Basics).

	Be familiar with the basics of kernel configuration and
	 compilation (Chapter 8, Configuring the FreeBSD Kernel).

3.11. Devices and Device Nodes
A device is a term used mostly for hardware-related
 activities in a system, including disks, printers, graphics
 cards, and keyboards. When FreeBSD boots, the majority of the boot
 messages refer to devices being detected. A copy of the boot
 messages are saved to
 /var/run/dmesg.boot.
Each device has a device name and number. For example,
 ada0 is the first SATA hard drive,
 while kbd0 represents the
 keyboard.
Most devices in FreeBSD must be accessed through special
 files called device nodes, which are located in
 /dev.
15.7. Nagios in a MAC Jail
This section demonstrates the steps that are needed to
 implement the Nagios network
 monitoring system in a MAC environment. This
 is meant as an example which still requires the administrator to
 test that the implemented policy meets the security requirements
 of the network before using in a production environment.
This example requires multilabel to be set
 on each file system. It also assumes that
 net-mgmt/nagios-plugins,
 net-mgmt/nagios, and
 www/apache22 are all installed, configured,
 and working correctly before attempting the integration into the
 MAC framework.
15.7.1. Create an Insecure User Class
Begin the procedure by adding the following user class
	to /etc/login.conf:
insecure:\
:copyright=/etc/COPYRIGHT:\
:welcome=/etc/motd:\
:setenv=MAIL=/var/mail/$,BLOCKSIZE=K:\
:path=~/bin:/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin
:manpath=/usr/share/man /usr/local/man:\
:nologin=/usr/sbin/nologin:\
:cputime=1h30m:\
:datasize=8M:\
:vmemoryuse=100M:\
:stacksize=2M:\
:memorylocked=4M:\
:memoryuse=8M:\
:filesize=8M:\
:coredumpsize=8M:\
:openfiles=24:\
:maxproc=32:\
:priority=0:\
:requirehome:\
:passwordtime=91d:\
:umask=022:\
:ignoretime@:\
:label=biba/10(10-10):
Then, add the following line to the default user class
	section:
:label=biba/high:
Save the edits and issue the following command to rebuild
	the database:
cap_mkdb /etc/login.conf
15.7.2. Configure Users
Set the root
	user to the default class using:
pw usermod root -L default
All user accounts that are not root will now require a login
	class. The login class is required, otherwise users will be
	refused access to common commands. The following
	sh script should do the trick:
for x in `awk -F: '($3 >= 1001) && ($3 != 65534) { print $1 }' \
	/etc/passwd`; do pw usermod $x -L default; done;
Next, drop the nagios and www accounts into the insecure
	class:
pw usermod nagios -L insecure
pw usermod www -L insecure
15.7.3. Create the Contexts File
A contexts file should now be created as
	 /etc/policy.contexts:
This is the default BIBA policy for this system.

System:
/var/run(/.*)?			biba/equal

/dev/(/.*)?			biba/equal

/var				biba/equal
/var/spool(/.*)?		biba/equal

/var/log(/.*)?			biba/equal

/tmp(/.*)?			biba/equal
/var/tmp(/.*)?			biba/equal

/var/spool/mqueue		biba/equal
/var/spool/clientmqueue		biba/equal

For Nagios:
/usr/local/etc/nagios(/.*)?	biba/10

/var/spool/nagios(/.*)?		biba/10

For apache
/usr/local/etc/apache(/.*)?	biba/10
This policy enforces security by setting restrictions on
	the flow of information. In this specific configuration,
	users, including root, should never be
	allowed to access Nagios.
	Configuration files and processes that are a part of
	Nagios will be completely self
	contained or jailed.
This file will be read after running
	setfsmac on every file system. This
	example sets the policy on the root file system:
setfsmac -ef /etc/policy.contexts /
Next, add these edits to the main section of
	/etc/mac.conf:
default_labels file ?biba
default_labels ifnet ?biba
default_labels process ?biba
default_labels socket ?biba
15.7.4. Loader Configuration
To finish the configuration, add the following lines to
	/boot/loader.conf:
mac_biba_load="YES"
mac_seeotheruids_load="YES"
security.mac.biba.trust_all_interfaces=1
And the following line to the network card configuration
	stored in /etc/rc.conf. If the primary
	network configuration is done via DHCP,
	this may need to be configured manually after every system
	boot:
maclabel biba/equal
15.7.5. Testing the Configuration
First, ensure that the web server and
	Nagios will not be started on
	system initialization and reboot. Ensure that root cannot access any of the
	files in the Nagios configuration
	directory. If root
	can list the contents of
	/var/spool/nagios, something is wrong.
	Instead, a “permission denied” error should be
	returned.
If all seems well, Nagios,
	Apache, and
	Sendmail can now be started:
cd /etc/mail && make stop && \
setpmac biba/equal make start && setpmac biba/10\(10-10\) apachectl start && \
setpmac biba/10\(10-10\) /usr/local/etc/rc.d/nagios.sh forcestart
Double check to ensure that everything is working
	properly. If not, check the log files for error messages. If
	needed, use sysctl(8) to disable the mac_biba(4)
	security policy module and try starting everything again as
	usual.
Note:
The root user
	 can still change the security enforcement and edit its
	 configuration files. The following command will permit the
	 degradation of the security policy to a lower grade for a
	 newly spawned shell:
setpmac biba/10 csh
To block this from happening, force the user into a
	 range using login.conf(5). If setpmac(8) attempts
	 to run a command outside of the compartment's range, an
	 error will be returned and the command will not be executed.
	 In this case, set root to
	 biba/high(high-high).

12.2. FreeBSD Boot Process
Turning on a computer and starting the operating system
 poses an interesting dilemma. By definition, the computer does
 not know how to do anything until the operating system is
 started. This includes running programs from the disk. If the
 computer can not run a program from the disk without the
 operating system, and the operating system programs are on the
 disk, how is the operating system started?
This problem parallels one in the book The
	Adventures of Baron Munchausen. A character had
 fallen part way down a manhole, and pulled himself out by
 grabbing his bootstraps and lifting. In the early days of
 computing, the term bootstrap was applied
 to the mechanism used to load the operating system. It has
 since become shortened to “booting”.
On x86 hardware, the Basic Input/Output System
 (BIOS) is responsible for loading the
 operating system. The BIOS looks on the hard
 disk for the Master Boot Record (MBR), which
 must be located in a specific place on the disk. The
 BIOS has enough knowledge to load and run the
 MBR, and assumes that the
 MBR can then carry out the rest of the tasks
 involved in loading the operating system, possibly with the help
 of the BIOS.
Note:
FreeBSD provides for booting from both the older
	MBR standard, and the newer GUID Partition
	Table (GPT). GPT
	partitioning is often found on computers with the Unified
	Extensible Firmware Interface (UEFI).
	However, FreeBSD can boot from GPT partitions
	even on machines with only a legacy BIOS
	with gptboot(8). Work is under way to provide direct
	UEFI booting.

The code within the MBR is typically
 referred to as a boot manager, especially
 when it interacts with the user. The boot manager usually has
 more code in the first track of the disk or within the file
 system. Examples of boot managers include the standard FreeBSD
 boot manager boot0, also called
 Boot Easy, and
 Grub, which is used by many Linux®
 distributions.
If only one operating system is installed, the
 MBR searches for the first bootable (active)
 slice on the disk, and then runs the code on that slice to load
 the remainder of the operating system. When multiple operating
 systems are present, a different boot manager can be installed
 to display a list of operating systems so the user
 can select one to boot.
The remainder of the FreeBSD bootstrap system is divided into
 three stages. The first stage knows just enough to get the
 computer into a specific state and run the second stage. The
 second stage can do a little bit more, before running the third
 stage. The third stage finishes the task of loading the
 operating system. The work is split into three stages because
 the MBR puts limits on the size of the
 programs that can be run at stages one and two. Chaining the
 tasks together allows FreeBSD to provide a more flexible
 loader.
The kernel is then started and begins to probe for devices
 and initialize them for use. Once the kernel boot process is
 finished, the kernel passes control to the user process
 init(8), which makes sure the disks are in a usable state,
 starts the user-level resource configuration which mounts file
 systems, sets up network cards to communicate on the network,
 and starts the processes which have been configured to run at
 startup.
This section describes these stages in more detail and
 demonstrates how to interact with the FreeBSD boot process.
12.2.1. The Boot Manager
The boot manager code in the MBR is
	sometimes referred to as stage zero of
	the boot process. By default, FreeBSD uses the
	boot0 boot manager.
The MBR installed by the FreeBSD installer
	is based on /boot/boot0. The size and
	capability of boot0 is restricted
	to 446 bytes due to the slice table and
	0x55AA identifier at the end of the
	MBR. If boot0
	and multiple operating systems are installed, a message
	similar to this example will be displayed at boot time:
Example 12.1. boot0 Screenshot
F1 Win
F2 FreeBSD

Default: F2

Other operating systems will overwrite an existing
	MBR if they are installed after FreeBSD. If
	this happens, or to replace the existing
	MBR with the FreeBSD MBR,
	use the following command:
fdisk -B -b /boot/boot0 device
where device is the boot disk,
	such as ad0 for the first
	IDE disk, ad2 for the
	first IDE disk on a second
	IDE controller, or da0
	for the first SCSI disk. To create a
	custom configuration of the MBR, refer to
	boot0cfg(8).
12.2.2. Stage One and Stage Two
Conceptually, the first and second stages are part of the
	same program on the same area of the disk. Because of space
	constraints, they have been split into two, but are always
	installed together. They are copied from the combined
	/boot/boot by the FreeBSD installer or
	bsdlabel.
These two stages are located outside file systems, in the
	first track of the boot slice, starting with the first sector.
	This is where boot0, or any other
	boot manager, expects to find a program to run which will
	continue the boot process.
The first stage, boot1, is very
	simple, since it can only be 512 bytes in size. It knows just
	enough about the FreeBSD bsdlabel, which
	stores information about the slice, to find and execute
	boot2.
Stage two, boot2, is slightly more
	sophisticated, and understands the FreeBSD file system enough to
	find files. It can provide a simple interface to choose the
	kernel or loader to run. It runs
	loader, which is much more
	sophisticated and provides a boot configuration file. If the
	boot process is interrupted at stage two, the following
	interactive screen is displayed:
Example 12.2. boot2 Screenshot
>> FreeBSD/i386 BOOT
Default: 0:ad(0,a)/boot/loader
boot:

To replace the installed boot1 and
	boot2, use bsdlabel,
	where diskslice is the disk and
	slice to boot from, such as ad0s1 for the
	first slice on the first IDE disk:
bsdlabel -B diskslice
Warning:
If just the disk name is used, such as
	 ad0, bsdlabel will
	 create the disk in “dangerously dedicated
	 mode”, without slices. This is probably not the
	 desired action, so double check the
	 diskslice before pressing
	 Return.

12.2.3. Stage Three
The loader is the final stage
	of the three-stage bootstrap process. It is located on the
	file system, usually as
	/boot/loader.
The loader is intended as an
	interactive method for configuration, using a built-in command
	set, backed up by a more powerful interpreter which has a more
	complex command set.
During initialization, loader
	will probe for a console and for disks, and figure out which
	disk it is booting from. It will set variables accordingly,
	and an interpreter is started where user commands can be
	passed from a script or interactively.
The loader will then read
	/boot/loader.rc, which by default reads
	in /boot/defaults/loader.conf which sets
	reasonable defaults for variables and reads
	/boot/loader.conf for local changes to
	those variables. loader.rc then acts on
	these variables, loading whichever modules and kernel are
	selected.
Finally, by default, loader
	issues a 10 second wait for key presses, and boots the kernel
	if it is not interrupted. If interrupted, the user is
	presented with a prompt which understands the command set,
	where the user may adjust variables, unload all modules, load
	modules, and then finally boot or reboot. Table 12.1, “Loader Built-In Commands” lists the most commonly
	used loader commands. For a
	complete discussion of all available commands, refer to
	loader(8).
Table 12.1. Loader Built-In Commands
	Variable	Description
	autoboot
		seconds	Proceeds to boot the kernel if not interrupted
		within the time span given, in seconds. It displays a
		countdown, and the default time span is 10
		seconds.
	boot
		[-options]
		[kernelname]	Immediately proceeds to boot the kernel, with
		any specified options or kernel name. Providing a
		kernel name on the command-line is only applicable
		after an unload has been issued.
		Otherwise, the previously-loaded kernel will be
		used. If kernelname is not
		qualified, it will be searched under
		/boot/kernel and
		/boot/modules.
	boot-conf	Goes through the same automatic configuration of
		modules based on specified variables, most commonly
		kernel. This only makes sense if
		unload is used first, before
		changing some variables.
	help
		[topic]	Shows help messages read from
		/boot/loader.help. If the topic
		given is index, the list of
		available topics is displayed.
	include filename
		…	Reads the specified file and interprets it line
		by line. An error immediately stops the
		include.
	load [-t
		 type]
		filename	Loads the kernel, kernel module, or file of the
		type given, with the specified filename. Any
		arguments after filename
		are passed to the file. If
		filename is not qualified, it
		will be searched under
		/boot/kernel
		and /boot/modules.
	ls [-l]
		[path]	Displays a listing of files in the given path, or
		the root directory, if the path is not specified. If
		-l is specified, file sizes will
		also be shown.
	lsdev [-v]	Lists all of the devices from which it may be
		possible to load modules. If -v is
		specified, more details are printed.
	lsmod [-v]	Displays loaded modules. If -v
		is specified, more details are shown.
	more filename	Displays the files specified, with a pause at
		each LINES displayed.
	reboot	Immediately reboots the system.
	set variable, set
		variable=value	Sets the specified environment variables.
	unload	Removes all loaded modules.

Here are some practical examples of loader usage. To boot
	the usual kernel in single-user mode
	:
boot -s
To unload the usual kernel and modules and then load the
	previous or another, specified kernel:
unload
load kernel.old
Use kernel.GENERIC to refer to the
	default kernel that comes with an installation, or
	kernel.old, to refer to the previously
	installed kernel before a system upgrade or before configuring
	a custom kernel.
Use the following to load the usual modules with another
	kernel:
unload
set kernel="kernel.old"
boot-conf
To load an automated kernel configuration script:
load -t userconfig_script /boot/kernel.conf
12.2.4. Last Stage
Once the kernel is loaded by either
	loader or by
	boot2, which bypasses
	loader, it examines any boot flags
	and adjusts its behavior as necessary. Table 12.2, “Kernel Interaction During Boot” lists the commonly used boot flags.
	Refer to boot(8) for more information on the other boot
	flags.
Table 12.2. Kernel Interaction During Boot
	Option	Description
	-a	During kernel initialization, ask for the device
		to mount as the root file system.
	-C	Boot the root file system from a
		CDROM.
	-s	Boot into single-user mode.
	-v	Be more verbose during kernel startup.

Once the kernel has finished booting, it passes control to
	the user process init(8), which is located at
	/sbin/init, or the program path specified
	in the init_path variable in
	loader. This is the last stage of the boot
	process.
The boot sequence makes sure that the file systems
	available on the system are consistent. If a
	UFS file system is not, and
	fsck cannot fix the inconsistencies,
	init drops the system into
	single-user mode so that the system administrator can resolve
	the problem directly. Otherwise, the system boots into
	multi-user mode.
12.2.4.1. Single-User Mode
A user can specify this mode by booting with
	 -s or by setting the
	 boot_single variable in
	 loader. It can also be reached
	 by running shutdown now from multi-user
	 mode. Single-user mode begins with this message:
Enter full pathname of shell or RETURN for /bin/sh:
If the user presses Enter, the system
	 will enter the default Bourne shell. To specify a different
	 shell, input the full path to the shell.
Single-user mode is usually used to repair a system that
	 will not boot due to an inconsistent file system or an error
	 in a boot configuration file. It can also be used to reset
	 the root password
	 when it is unknown. These actions are possible as the
	 single-user mode prompt gives full, local access to the
	 system and its configuration files. There is no networking
	 in this mode.
While single-user mode is useful for repairing a system,
	 it poses a security risk unless the system is in a
	 physically secure location. By default, any user who can
	 gain physical access to a system will have full control of
	 that system after booting into single-user mode.
If the system console is changed to
	 insecure in
	 /etc/ttys, the system will first prompt
	 for the root
	 password before initiating single-user mode. This adds a
	 measure of security while removing the ability to reset the
	 root password when
	 it is unknown.
Example 12.3. Configuring an Insecure Console in
	 /etc/ttys
name getty type status comments
#
If console is marked "insecure", then init will ask for the root password
when going to single-user mode.
console none unknown off insecure

An insecure console means that
	 physical security to the console is considered to be
	 insecure, so only someone who knows the root password may use
	 single-user mode.
12.2.4.2. Multi-User Mode
If init finds the file
	 systems to be in order, or once the user has finished their
	 commands in single-user mode and has typed
	 exit to leave single-user mode, the
	 system enters multi-user mode, in which it starts the
	 resource configuration of the system.
The resource configuration system reads in configuration
	 defaults from /etc/defaults/rc.conf and
	 system-specific details from
	 /etc/rc.conf. It then proceeds to
	 mount the system file systems listed in
	 /etc/fstab. It starts up networking
	 services, miscellaneous system daemons, then the startup
	 scripts of locally installed packages.
To learn more about the resource configuration system,
	 refer to rc(8) and examine the scripts located in
	 /etc/rc.d.
4.7. Post-Installation Considerations
Regardless of whether the software was installed from a
 binary package or port, most third-party applications require
 some level of configuration after installation. The following
 commands and locations can be used to help determine what was
 installed with the application.
	Most applications install at least one default
	 configuration file in /usr/local/etc.
	 In cases where an application has a large number of
	 configuration files, a subdirectory will be created to hold
	 them. Often, sample configuration files are installed which
	 end with a suffix such as .sample. The
	 configuration files should be reviewed and possibly
	 edited to meet the system's needs. To edit a sample file,
	 first copy it without the .sample
	 extension.

	Applications which provide documentation will install
	 it into /usr/local/share/doc and many
	 applications also install manual pages. This documentation
	 should be consulted before continuing.

	Some applications run services which must be added
	 to /etc/rc.conf before starting the
	 application. These applications usually install a startup
	 script in /usr/local/etc/rc.d. See
	 Starting
	 Services for more information.
Note:
By design, applications do not run their startup
	 script upon installation, nor do they run their stop
	 script upon deinstallation or upgrade. This decision
	 is left to the individual system administrator.

	Users of csh(1) should run
	 rehash to rebuild the known binary list
	 in the shells PATH.

	Use pkg info to determine which
	 files, man pages, and binaries were installed with the
	 application.

19.8. ZFS Features and Terminology
ZFS is a fundamentally different file
 system because it is more than just a file system.
 ZFS combines the roles of file system and
 volume manager, enabling additional storage devices to be added
 to a live system and having the new space available on all of
 the existing file systems in that pool immediately. By
 combining the traditionally separate roles,
 ZFS is able to overcome previous limitations
 that prevented RAID groups being able to
 grow. Each top level device in a pool is called a
 vdev, which can be a simple disk or a
 RAID transformation such as a mirror or
 RAID-Z array. ZFS file
 systems (called datasets) each have access
 to the combined free space of the entire pool. As blocks are
 allocated from the pool, the space available to each file system
 decreases. This approach avoids the common pitfall with
 extensive partitioning where free space becomes fragmented
 across the partitions.
	pool	A storage pool is the most
	 basic building block of ZFS. A pool
	 is made up of one or more vdevs, the underlying devices
	 that store the data. A pool is then used to create one
	 or more file systems (datasets) or block devices
	 (volumes). These datasets and volumes share the pool of
	 remaining free space. Each pool is uniquely identified
	 by a name and a GUID. The features
	 available are determined by the ZFS
	 version number on the pool.
	vdev Types	A pool is made up of one or more vdevs, which
	 themselves can be a single disk or a group of disks, in
	 the case of a RAID transform. When
	 multiple vdevs are used, ZFS spreads
	 data across the vdevs to increase performance and
	 maximize usable space.

	 	Disk
		 - The most basic type of vdev is a standard block
		 device. This can be an entire disk (such as
		 /dev/ada0
		 or
		 /dev/da0)
		 or a partition
		 (/dev/ada0p3).
		 On FreeBSD, there is no performance penalty for using
		 a partition rather than the entire disk. This
		 differs from recommendations made by the Solaris
		 documentation.
Caution:
Using an entire disk as part of a bootable
		 pool is strongly discouraged, as this may render
		 the pool unbootable. Likewise, you should not
		 use an entire disk as part of a mirror or
		 RAID-Z vdev. These are
		 because it it impossible to reliably determine
		 the size of an unpartitioned disk at boot time
		 and because there's no place to put in boot
		 code.

	File
		 - In addition to disks, ZFS
		 pools can be backed by regular files, this is
		 especially useful for testing and experimentation.
		 Use the full path to the file as the device path
		 in zpool create. All vdevs
		 must be at least 128 MB in size.

	Mirror
		 - When creating a mirror, specify the
		 mirror keyword followed by the
		 list of member devices for the mirror. A mirror
		 consists of two or more devices, all data will be
		 written to all member devices. A mirror vdev will
		 only hold as much data as its smallest member. A
		 mirror vdev can withstand the failure of all but
		 one of its members without losing any data.
Note:
A regular single disk vdev can be upgraded
		 to a mirror vdev at any time with
		 zpool
			attach.

	RAID-Z
		 - ZFS implements
		 RAID-Z, a variation on standard
		 RAID-5 that offers better
		 distribution of parity and eliminates the
		 “RAID-5 write
		 hole” in which the data and parity
		 information become inconsistent after an
		 unexpected restart. ZFS
		 supports three levels of RAID-Z
		 which provide varying levels of redundancy in
		 exchange for decreasing levels of usable storage.
		 The types are named RAID-Z1
		 through RAID-Z3 based on the
		 number of parity devices in the array and the
		 number of disks which can fail while the pool
		 remains operational.
In a RAID-Z1 configuration
		 with four disks, each 1 TB, usable storage is
		 3 TB and the pool will still be able to
		 operate in degraded mode with one faulted disk.
		 If an additional disk goes offline before the
		 faulted disk is replaced and resilvered, all data
		 in the pool can be lost.
In a RAID-Z3 configuration
		 with eight disks of 1 TB, the volume will
		 provide 5 TB of usable space and still be
		 able to operate with three faulted disks. Sun™
		 recommends no more than nine disks in a single
		 vdev. If the configuration has more disks, it is
		 recommended to divide them into separate vdevs and
		 the pool data will be striped across them.
A configuration of two
		 RAID-Z2 vdevs consisting of 8
		 disks each would create something similar to a
		 RAID-60 array. A
		 RAID-Z group's storage capacity
		 is approximately the size of the smallest disk
		 multiplied by the number of non-parity disks.
		 Four 1 TB disks in RAID-Z1
		 has an effective size of approximately 3 TB,
		 and an array of eight 1 TB disks in
		 RAID-Z3 will yield 5 TB of
		 usable space.

	Spare
		 - ZFS has a special pseudo-vdev
		 type for keeping track of available hot spares.
		 Note that installed hot spares are not deployed
		 automatically; they must manually be configured to
		 replace the failed device using
		 zfs replace.

	Log
		 - ZFS Log Devices, also known
		 as ZFS Intent Log (ZIL)
		 move the intent log from the regular pool devices
		 to a dedicated device, typically an
		 SSD. Having a dedicated log
		 device can significantly improve the performance
		 of applications with a high volume of synchronous
		 writes, especially databases. Log devices can be
		 mirrored, but RAID-Z is not
		 supported. If multiple log devices are used,
		 writes will be load balanced across them.

	Cache
		 - Adding a cache vdev to a pool will add the
		 storage of the cache to the L2ARC.
		 Cache devices cannot be mirrored. Since a cache
		 device only stores additional copies of existing
		 data, there is no risk of data loss.

	Transaction Group
	 (TXG)	Transaction Groups are the way changed blocks are
	 grouped together and eventually written to the pool.
	 Transaction groups are the atomic unit that
	 ZFS uses to assert consistency. Each
	 transaction group is assigned a unique 64-bit
	 consecutive identifier. There can be up to three active
	 transaction groups at a time, one in each of these three
	 states:

	 	Open - When a new
		 transaction group is created, it is in the open
		 state, and accepts new writes. There is always
		 a transaction group in the open state, however the
		 transaction group may refuse new writes if it has
		 reached a limit. Once the open transaction group
		 has reached a limit, or the vfs.zfs.txg.timeout
		 has been reached, the transaction group advances
		 to the next state.

	Quiescing - A short state
		 that allows any pending operations to finish while
		 not blocking the creation of a new open
		 transaction group. Once all of the transactions
		 in the group have completed, the transaction group
		 advances to the final state.

	Syncing - All of the data
		 in the transaction group is written to stable
		 storage. This process will in turn modify other
		 data, such as metadata and space maps, that will
		 also need to be written to stable storage. The
		 process of syncing involves multiple passes. The
		 first, all of the changed data blocks, is the
		 biggest, followed by the metadata, which may take
		 multiple passes to complete. Since allocating
		 space for the data blocks generates new metadata,
		 the syncing state cannot finish until a pass
		 completes that does not allocate any additional
		 space. The syncing state is also where
		 synctasks are completed.
		 Synctasks are administrative operations, such as
		 creating or destroying snapshots and datasets,
		 that modify the uberblock are completed. Once the
		 sync state is complete, the transaction group in
		 the quiescing state is advanced to the syncing
		 state.

	 All administrative functions, such as snapshot
	 are written as part of the transaction group. When a
	 synctask is created, it is added to the currently open
	 transaction group, and that group is advanced as quickly
	 as possible to the syncing state to reduce the
	 latency of administrative commands.
	Adaptive Replacement
	 Cache (ARC)	ZFS uses an Adaptive Replacement
	 Cache (ARC), rather than a more
	 traditional Least Recently Used (LRU)
	 cache. An LRU cache is a simple list
	 of items in the cache, sorted by when each object was
	 most recently used. New items are added to the top of
	 the list. When the cache is full, items from the
	 bottom of the list are evicted to make room for more
	 active objects. An ARC consists of
	 four lists; the Most Recently Used
	 (MRU) and Most Frequently Used
	 (MFU) objects, plus a ghost list for
	 each. These ghost lists track recently evicted objects
	 to prevent them from being added back to the cache.
	 This increases the cache hit ratio by avoiding objects
	 that have a history of only being used occasionally.
	 Another advantage of using both an
	 MRU and MFU is
	 that scanning an entire file system would normally evict
	 all data from an MRU or
	 LRU cache in favor of this freshly
	 accessed content. With ZFS, there is
	 also an MFU that only tracks the most
	 frequently used objects, and the cache of the most
	 commonly accessed blocks remains.
	L2ARC	L2ARC is the second level
	 of the ZFS caching system. The
	 primary ARC is stored in
	 RAM. Since the amount of
	 available RAM is often limited,
	 ZFS can also use
	 cache vdevs.
	 Solid State Disks (SSDs) are often
	 used as these cache devices due to their higher speed
	 and lower latency compared to traditional spinning
	 disks. L2ARC is entirely optional,
	 but having one will significantly increase read speeds
	 for files that are cached on the SSD
	 instead of having to be read from the regular disks.
	 L2ARC can also speed up deduplication
	 because a DDT that does not fit in
	 RAM but does fit in the
	 L2ARC will be much faster than a
	 DDT that must be read from disk. The
	 rate at which data is added to the cache devices is
	 limited to prevent prematurely wearing out
	 SSDs with too many writes. Until the
	 cache is full (the first block has been evicted to make
	 room), writing to the L2ARC is
	 limited to the sum of the write limit and the boost
	 limit, and afterwards limited to the write limit. A
	 pair of sysctl(8) values control these rate limits.
	 vfs.zfs.l2arc_write_max
	 controls how many bytes are written to the cache per
	 second, while vfs.zfs.l2arc_write_boost
	 adds to this limit during the
	 “Turbo Warmup Phase” (Write Boost).
	ZIL	ZIL accelerates synchronous
	 transactions by using storage devices like
	 SSDs that are faster than those used
	 in the main storage pool. When an application requests
	 a synchronous write (a guarantee that the data has been
	 safely stored to disk rather than merely cached to be
	 written later), the data is written to the faster
	 ZIL storage, then later flushed out
	 to the regular disks. This greatly reduces latency and
	 improves performance. Only synchronous workloads like
	 databases will benefit from a ZIL.
	 Regular asynchronous writes such as copying files will
	 not use the ZIL at all.
	Copy-On-Write	Unlike a traditional file system, when data is
	 overwritten on ZFS, the new data is
	 written to a different block rather than overwriting the
	 old data in place. Only when this write is complete is
	 the metadata then updated to point to the new location.
	 In the event of a shorn write (a system crash or power
	 loss in the middle of writing a file), the entire
	 original contents of the file are still available and
	 the incomplete write is discarded. This also means that
	 ZFS does not require a fsck(8)
	 after an unexpected shutdown.
	Dataset	Dataset is the generic term
	 for a ZFS file system, volume,
	 snapshot or clone. Each dataset has a unique name in
	 the format
	 poolname/path@snapshot.
	 The root of the pool is technically a dataset as well.
	 Child datasets are named hierarchically like
	 directories. For example,
	 mypool/home, the home
	 dataset, is a child of mypool
	 and inherits properties from it. This can be expanded
	 further by creating
	 mypool/home/user. This
	 grandchild dataset will inherit properties from the
	 parent and grandparent. Properties on a child can be
	 set to override the defaults inherited from the parents
	 and grandparents. Administration of datasets and their
	 children can be
	 delegated.
	File system	A ZFS dataset is most often used
	 as a file system. Like most other file systems, a
	 ZFS file system is mounted somewhere
	 in the systems directory hierarchy and contains files
	 and directories of its own with permissions, flags, and
	 other metadata.
	Volume	In additional to regular file system datasets,
	 ZFS can also create volumes, which
	 are block devices. Volumes have many of the same
	 features, including copy-on-write, snapshots, clones,
	 and checksumming. Volumes can be useful for running
	 other file system formats on top of
	 ZFS, such as UFS
	 virtualization, or exporting iSCSI
	 extents.
	Snapshot	The
	 copy-on-write
	 (COW) design of
	 ZFS allows for nearly instantaneous,
	 consistent snapshots with arbitrary names. After taking
	 a snapshot of a dataset, or a recursive snapshot of a
	 parent dataset that will include all child datasets, new
	 data is written to new blocks, but the old blocks are
	 not reclaimed as free space. The snapshot contains
	 the original version of the file system, and the live
	 file system contains any changes made since the snapshot
	 was taken. No additional space is used. As new data is
	 written to the live file system, new blocks are
	 allocated to store this data. The apparent size of the
	 snapshot will grow as the blocks are no longer used in
	 the live file system, but only in the snapshot. These
	 snapshots can be mounted read only to allow for the
	 recovery of previous versions of files. It is also
	 possible to
	 rollback a live
	 file system to a specific snapshot, undoing any changes
	 that took place after the snapshot was taken. Each
	 block in the pool has a reference counter which keeps
	 track of how many snapshots, clones, datasets, or
	 volumes make use of that block. As files and snapshots
	 are deleted, the reference count is decremented. When a
	 block is no longer referenced, it is reclaimed as free
	 space. Snapshots can also be marked with a
	 hold. When a
	 snapshot is held, any attempt to destroy it will return
	 an EBUSY error. Each snapshot can
	 have multiple holds, each with a unique name. The
	 release command
	 removes the hold so the snapshot can deleted. Snapshots
	 can be taken on volumes, but they can only be cloned or
	 rolled back, not mounted independently.
	Clone	Snapshots can also be cloned. A clone is a
	 writable version of a snapshot, allowing the file system
	 to be forked as a new dataset. As with a snapshot, a
	 clone initially consumes no additional space. As
	 new data is written to a clone and new blocks are
	 allocated, the apparent size of the clone grows. When
	 blocks are overwritten in the cloned file system or
	 volume, the reference count on the previous block is
	 decremented. The snapshot upon which a clone is based
	 cannot be deleted because the clone depends on it. The
	 snapshot is the parent, and the clone is the child.
	 Clones can be promoted, reversing
	 this dependency and making the clone the parent and the
	 previous parent the child. This operation requires no
	 additional space. Because the amount of space used by
	 the parent and child is reversed, existing quotas and
	 reservations might be affected.
	Checksum	Every block that is allocated is also checksummed.
	 The checksum algorithm used is a per-dataset property,
	 see set.
	 The checksum of each block is transparently validated as
	 it is read, allowing ZFS to detect
	 silent corruption. If the data that is read does not
	 match the expected checksum, ZFS will
	 attempt to recover the data from any available
	 redundancy, like mirrors or RAID-Z).
	 Validation of all checksums can be triggered with scrub.
	 Checksum algorithms include:

	 	fletcher2

	fletcher4

	sha256

	 The fletcher algorithms are faster,
	 but sha256 is a strong cryptographic
	 hash and has a much lower chance of collisions at the
	 cost of some performance. Checksums can be disabled,
	 but it is not recommended.
	Compression	Each dataset has a compression property, which
	 defaults to off. This property can be set to one of a
	 number of compression algorithms. This will cause all
	 new data that is written to the dataset to be
	 compressed. Beyond a reduction in space used, read and
	 write throughput often increases because fewer blocks
	 are read or written.

	 	LZ4 -
		 Added in ZFS pool version
		 5000 (feature flags), LZ4 is
		 now the recommended compression algorithm.
		 LZ4 compresses approximately
		 50% faster than LZJB when
		 operating on compressible data, and is over three
		 times faster when operating on uncompressible
		 data. LZ4 also decompresses
		 approximately 80% faster than
		 LZJB. On modern
		 CPUs, LZ4
		 can often compress at over 500 MB/s, and
		 decompress at over 1.5 GB/s (per single CPU
		 core).

	LZJB -
		 The default compression algorithm. Created by
		 Jeff Bonwick (one of the original creators of
		 ZFS). LZJB
		 offers good compression with less
		 CPU overhead compared to
		 GZIP. In the future, the
		 default compression algorithm will likely change
		 to LZ4.

	GZIP -
		 A popular stream compression algorithm available
		 in ZFS. One of the main
		 advantages of using GZIP is its
		 configurable level of compression. When setting
		 the compress property, the
		 administrator can choose the level of compression,
		 ranging from gzip1, the lowest
		 level of compression, to gzip9,
		 the highest level of compression. This gives the
		 administrator control over how much
		 CPU time to trade for saved
		 disk space.

	ZLE -
		 Zero Length Encoding is a special compression
		 algorithm that only compresses continuous runs of
		 zeros. This compression algorithm is only useful
		 when the dataset contains large blocks of
		 zeros.

	Copies	When set to a value greater than 1, the
	 copies property instructs
	 ZFS to maintain multiple copies of
	 each block in the
	 File System
	 or
	 Volume. Setting
	 this property on important datasets provides additional
	 redundancy from which to recover a block that does not
	 match its checksum. In pools without redundancy, the
	 copies feature is the only form of redundancy. The
	 copies feature can recover from a single bad sector or
	 other forms of minor corruption, but it does not protect
	 the pool from the loss of an entire disk.
	Deduplication	Checksums make it possible to detect duplicate
	 blocks of data as they are written. With deduplication,
	 the reference count of an existing, identical block is
	 increased, saving storage space. To detect duplicate
	 blocks, a deduplication table (DDT)
	 is kept in memory. The table contains a list of unique
	 checksums, the location of those blocks, and a reference
	 count. When new data is written, the checksum is
	 calculated and compared to the list. If a match is
	 found, the existing block is used. The
	 SHA256 checksum algorithm is used
	 with deduplication to provide a secure cryptographic
	 hash. Deduplication is tunable. If
	 dedup is on, then
	 a matching checksum is assumed to mean that the data is
	 identical. If dedup is set to
	 verify, then the data in the two
	 blocks will be checked byte-for-byte to ensure it is
	 actually identical. If the data is not identical, the
	 hash collision will be noted and the two blocks will be
	 stored separately. Because DDT must
	 store the hash of each unique block, it consumes a very
	 large amount of memory. A general rule of thumb is
	 5-6 GB of ram per 1 TB of deduplicated data).
	 In situations where it is not practical to have enough
	 RAM to keep the entire
	 DDT in memory, performance will
	 suffer greatly as the DDT must be
	 read from disk before each new block is written.
	 Deduplication can use L2ARC to store
	 the DDT, providing a middle ground
	 between fast system memory and slower disks. Consider
	 using compression instead, which often provides nearly
	 as much space savings without the additional memory
	 requirement.
	Scrub	Instead of a consistency check like fsck(8),
	 ZFS has scrub.
	 scrub reads all data blocks stored on
	 the pool and verifies their checksums against the known
	 good checksums stored in the metadata. A periodic check
	 of all the data stored on the pool ensures the recovery
	 of any corrupted blocks before they are needed. A scrub
	 is not required after an unclean shutdown, but is
	 recommended at least once every three months. The
	 checksum of each block is verified as blocks are read
	 during normal use, but a scrub makes certain that even
	 infrequently used blocks are checked for silent
	 corruption. Data security is improved, especially in
	 archival storage situations. The relative priority of
	 scrub can be adjusted with vfs.zfs.scrub_delay
	 to prevent the scrub from degrading the performance of
	 other workloads on the pool.
	Dataset Quota	ZFS provides very fast and
	 accurate dataset, user, and group space accounting in
	 addition to quotas and space reservations. This gives
	 the administrator fine grained control over how space is
	 allocated and allows space to be reserved for critical
	 file systems.

	 ZFS supports different types of
		quotas: the dataset quota, the reference
		 quota (refquota), the
		user
		 quota, and the
		group
		 quota.

	 Quotas limit the amount of space that a dataset
		and all of its descendants, including snapshots of the
		dataset, child datasets, and the snapshots of those
		datasets, can consume.

	 Note:
Quotas cannot be set on volumes, as the
		 volsize property acts as an
		 implicit quota.

	Reference
	 Quota	A reference quota limits the amount of space a
	 dataset can consume by enforcing a hard limit. However,
	 this hard limit includes only space that the dataset
	 references and does not include space used by
	 descendants, such as file systems or snapshots.
	User
	 Quota	User quotas are useful to limit the amount of space
	 that can be used by the specified user.
	Group
	 Quota	The group quota limits the amount of space that a
	 specified group can consume.
	Dataset
	 Reservation	The reservation property makes
	 it possible to guarantee a minimum amount of space for a
	 specific dataset and its descendants. If a 10 GB
	 reservation is set on
	 storage/home/bob, and another
	 dataset tries to use all of the free space, at least
	 10 GB of space is reserved for this dataset. If a
	 snapshot is taken of
	 storage/home/bob, the space used by
	 that snapshot is counted against the reservation. The
	 refreservation
	 property works in a similar way, but it
	 excludes descendants like
	 snapshots.

	 Reservations of any sort are useful in many
		situations, such as planning and testing the
		suitability of disk space allocation in a new system,
		or ensuring that enough space is available on file
		systems for audio logs or system recovery procedures
		and files.

	
	Reference
	 Reservation	The refreservation property
	 makes it possible to guarantee a minimum amount of
	 space for the use of a specific dataset
	 excluding its descendants. This
	 means that if a 10 GB reservation is set on
	 storage/home/bob, and another
	 dataset tries to use all of the free space, at least
	 10 GB of space is reserved for this dataset. In
	 contrast to a regular
	 reservation,
	 space used by snapshots and descendant datasets is not
	 counted against the reservation. For example, if a
	 snapshot is taken of
	 storage/home/bob, enough disk space
	 must exist outside of the
	 refreservation amount for the
	 operation to succeed. Descendants of the main data set
	 are not counted in the refreservation
	 amount and so do not encroach on the space set.
	Resilver	When a disk fails and is replaced, the new disk
	 must be filled with the data that was lost. The process
	 of using the parity information distributed across the
	 remaining drives to calculate and write the missing data
	 to the new drive is called
	 resilvering.
	Online	A pool or vdev in the Online
	 state has all of its member devices connected and fully
	 operational. Individual devices in the
	 Online state are functioning
	 normally.
	Offline	Individual devices can be put in an
	 Offline state by the administrator if
	 there is sufficient redundancy to avoid putting the pool
	 or vdev into a
	 Faulted state.
	 An administrator may choose to offline a disk in
	 preparation for replacing it, or to make it easier to
	 identify.
	Degraded	A pool or vdev in the Degraded
	 state has one or more disks that have been disconnected
	 or have failed. The pool is still usable, but if
	 additional devices fail, the pool could become
	 unrecoverable. Reconnecting the missing devices or
	 replacing the failed disks will return the pool to an
	 Online state
	 after the reconnected or new device has completed the
	 Resilver
	 process.
	Faulted	A pool or vdev in the Faulted
	 state is no longer operational. The data on it can no
	 longer be accessed. A pool or vdev enters the
	 Faulted state when the number of
	 missing or failed devices exceeds the level of
	 redundancy in the vdev. If missing devices can be
	 reconnected, the pool will return to a
	 Online state. If
	 there is insufficient redundancy to compensate for the
	 number of failed disks, then the contents of the pool
	 are lost and must be restored from backups.

2.5. Using bsdinstall
This section shows the order of the
 bsdinstall menus and the type of
 information that will be asked before the system is installed.
 Use the arrow keys to highlight a menu option, then
 Space to select or deselect that menu item.
 When finished, press Enter to save the
 selection and move onto the next screen.
2.5.1. Selecting the Keymap Menu
Before starting the process,
	bsdinstall will load the keymap
	files as show in Figure 2.4, “Keymap Loading”.
[image: Keymap Loading]

Figure 2.4. Keymap Loading

After the keymaps have been loaded
	bsdinstall displays the
	menu shown in Figure 2.5, “Keymap Selection Menu”. Use the
	up and down arrows to select the keymap that most closely
	represents the mapping of the keyboard attached to the system.
	Press Enter to save the selection.
[image: Keymap Selection Menu]

Figure 2.5. Keymap Selection Menu

Note:
Pressing Esc will exit this menu
	and use the default keymap. If the choice of keymap is not
	clear, United States of America
	ISO-8859-1 is also a safe option.

In addition, when selecting a different keymap, the user
	can try the keymap and ensure it is correct before proceeding
	as shown in Figure 2.6, “Keymap Testing Menu”.
[image: Keymap Testing Menu]

Figure 2.6. Keymap Testing Menu

2.5.2. Setting the Hostname
The next bsdinstall menu is
	used to set the hostname for the newly installed
	system.
[image: Setting the Hostname]

Figure 2.7. Setting the Hostname

Type in a hostname that is unique for the network. It
	should be a fully-qualified hostname, such as machine3.example.com.
2.5.3. Selecting Components to Install
Next, bsdinstall will prompt to
	select optional components to install.
[image: Selecting Components to Install]

Figure 2.8. Selecting Components to Install

Deciding which components to install will depend largely
	on the intended use of the system and the amount of disk space
	available. The FreeBSD kernel and userland, collectively known
	as the base system, are always
	installed. Depending on the architecture, some of these
	components may not appear:
	base-dbg - Base tools like
	 cat,
	 ls among many others with
	 debug symbols activated.

	kernel-dbg - Kernel and modules with
	 debug symbols activated.

	lib32-dbg - Compatibility libraries
	 for running 32-bit applications on a 64-bit version of
	 FreeBSD with debug symbols activated.

	lib32 - Compatibility libraries for
	 running 32-bit applications on a 64-bit version of
	 FreeBSD.

	ports - The FreeBSD Ports Collection
	 is a collection of files which automates the downloading,
	 compiling and installation of third-party software
	 packages. Chapter 4, Installing Applications: Packages and Ports discusses how to use
	 the Ports Collection.
Warning:
The installation program does not check for
	 adequate disk space. Select this option only if
	 sufficient hard disk space is available. The FreeBSD Ports
	 Collection takes up about 500 MB of disk
	 space.

	src - The complete FreeBSD source code
	 for both the kernel and the userland. Although not
	 required for the majority of applications, it may be
	 required to build device drivers, kernel modules, or some
	 applications from the Ports Collection. It is also used
	 for developing FreeBSD itself. The full source tree requires
	 1 GB of disk space and recompiling the entire FreeBSD
	 system requires an additional 5 GB of space.

	tests - FreeBSD Test Suite.

2.5.4. Installing from the Network
The menu shown in
	Figure 2.9, “Installing from the Network” only appears
	when installing from a -bootonly.iso or
	-mini-memstick.img as this installation
	media does not hold copies of the installation files.
	Since the installation files must be retrieved over a network
	connection, this menu indicates that the network interface must
	be configured first. If this menu is shown in any step of the
	process remember to follow the instructions in
	Section 2.9.1, “Configuring Network Interfaces”.
[image: Installing from the Network]

Figure 2.9. Installing from the Network

Chapter 23. Updating and Upgrading FreeBSD
Restructured, reorganized, and parts updated
	 by Jim Mock. Original work by Jordan Hubbard, Poul-Henning Kamp, John Polstra and Nik Clayton. 23.1. Synopsis
FreeBSD is under constant development between releases. Some
 people prefer to use the officially released versions, while
 others prefer to keep in sync with the latest developments.
 However, even official releases are often updated with security
 and other critical fixes. Regardless of the version used, FreeBSD
 provides all the necessary tools to keep the system updated, and
 allows for easy upgrades between versions. This chapter
 describes how to track the development system and the basic
 tools for keeping a FreeBSD system up-to-date.
After reading this chapter, you will know:
	How to keep a FreeBSD system up-to-date with
	 freebsd-update or
	 Subversion.

	How to compare the state of an installed system against
	 a known pristine copy.

	How to keep the installed documentation up-to-date with
	 Subversion or documentation
	 ports.

	The difference between the two development
	 branches: FreeBSD-STABLE and FreeBSD-CURRENT.

	How to rebuild and reinstall the entire base
	 system.

Before reading this chapter, you should:
	Properly set up the network connection
	 (Chapter 31, Advanced Networking).

	Know how to install additional third-party
	 software (Chapter 4, Installing Applications: Packages and Ports).

Note:
Throughout this chapter, svnlite is used to
	obtain and update FreeBSD sources. Optionally, the
	devel/subversion port or
	package may be used.

Copyright
Redistribution and use in source (XML DocBook) and 'compiled'
 forms (XML, HTML, PDF, PostScript, RTF and so forth) with or without
 modification, are permitted provided that the following conditions are
 met:
	Redistributions of source code (XML DocBook) must retain the
 above copyright notice, this list of conditions and the following
 disclaimer as the first lines of this file unmodified.

	Redistributions in compiled form (transformed to other DTDs,
 converted to PDF, PostScript, RTF and other formats) must
 reproduce the above copyright notice, this list of conditions and
 the following disclaimer in the documentation and/or other
 materials provided with the distribution.

Important:
THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION
 PROJECT "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
 BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
 THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT,
 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
 DAMAGE.

Chapter 24. DTrace
Written
	by Tom Rhodes. 24.1. Synopsis
DTrace, also known as Dynamic Tracing, was developed by
 Sun™ as a tool for locating performance bottlenecks in
 production and pre-production systems. In addition to
 diagnosing performance problems, DTrace can be used to help
 investigate and debug unexpected behavior in both the FreeBSD
 kernel and in userland programs.
DTrace is a remarkable profiling tool, with an impressive
 array of features for diagnosing system issues. It may also be
 used to run pre-written scripts to take advantage of its
 capabilities. Users can author their own utilities using the
 DTrace D Language, allowing them to customize their profiling
 based on specific needs.
The FreeBSD implementation provides full support for kernel
 DTrace and experimental support for userland DTrace.
 Userland DTrace allows users to perform function boundary
 tracing for userland programs using the pid
 provider, and to insert static probes into userland programs for
 later tracing. Some ports, such as
 databases/postgresql12-server and
 lang/php74 have a DTrace option to enable
 static probes.
The official guide to DTrace is maintained by the Illumos
 project at DTrace
	Guide.
After reading this chapter, you will know:
	What DTrace is and what features it provides.

	Differences between the Solaris™ DTrace
	 implementation and the one provided by FreeBSD.

	How to enable and use DTrace on FreeBSD.

Before reading this chapter, you should:
	Understand UNIX® and FreeBSD basics
	 (Chapter 3, FreeBSD Basics).

	Have some familiarity with security and how it pertains
	 to FreeBSD (Chapter 13, Security).

18.4. RAID3 - Byte-level Striping with
	Dedicated Parity
Written by Mark Gladman and Daniel Gerzo. Based on documentation by Tom Rhodes and Murray Stokely. RAID3 is a method used to combine several
 disk drives into a single volume with a dedicated parity disk.
 In a RAID3 system, data is split up into a
 number of bytes that are written across all the drives in the
 array except for one disk which acts as a dedicated parity disk.
 This means that disk reads from a RAID3
 implementation access all disks in the array. Performance can
 be enhanced by using multiple disk controllers. The
 RAID3 array provides a fault tolerance of 1
 drive, while providing a capacity of 1 - 1/n times the total
 capacity of all drives in the array, where n is the number of
 hard drives in the array. Such a configuration is mostly
 suitable for storing data of larger sizes such as multimedia
 files.
At least 3 physical hard drives are required to build a
 RAID3 array. Each disk must be of the same
 size, since I/O requests are interleaved to
 read or write to multiple disks in parallel. Also, due to the
 nature of RAID3, the number of drives must be
 equal to 3, 5, 9, 17, and so on, or 2^n + 1.
This section demonstrates how to create a software
 RAID3 on a FreeBSD system.
Note:
While it is theoretically possible to boot from a
	RAID3 array on FreeBSD, that configuration is
	uncommon and is not advised.

18.4.1. Creating a Dedicated RAID3
	Array
In FreeBSD, support for RAID3 is
	implemented by the graid3(8) GEOM
	class. Creating a dedicated RAID3 array on
	FreeBSD requires the following steps.
	First, load the geom_raid3.ko
	 kernel module by issuing one of the following
	 commands:
graid3 load
or:
kldload geom_raid3

	Ensure that a suitable mount point exists. This
	 command creates a new directory to use as the mount
	 point:
mkdir /multimedia

	Determine the device names for the disks which will be
	 added to the array, and create the new
	 RAID3 device. The final device listed
	 will act as the dedicated parity disk. This example uses
	 three unpartitioned ATA drives:
	 ada1 and
	 ada2 for
	 data, and
	 ada3 for
	 parity.
graid3 label -v gr0 /dev/ada1 /dev/ada2 /dev/ada3
Metadata value stored on /dev/ada1.
Metadata value stored on /dev/ada2.
Metadata value stored on /dev/ada3.
Done.

	Partition the newly created gr0
	 device and put a UFS file system on
	 it:
gpart create -s GPT /dev/raid3/gr0
gpart add -t freebsd-ufs /dev/raid3/gr0
newfs -j /dev/raid3/gr0p1
Many numbers will glide across the screen, and after a
	 bit of time, the process will be complete. The volume has
	 been created and is ready to be mounted:
mount /dev/raid3/gr0p1 /multimedia/
The RAID3 array is now ready to
	 use.

Additional configuration is needed to retain this setup
	across system reboots.
	The geom_raid3.ko module must be
	 loaded before the array can be mounted. To automatically
	 load the kernel module during system initialization, add
	 the following line to
	 /boot/loader.conf:
geom_raid3_load="YES"

	The following volume information must be added to
	 /etc/fstab in order to
	 automatically mount the array's file system during the
	 system boot process:
/dev/raid3/gr0p1	/multimedia	ufs	rw	2	2

31.5. Bluetooth
Written by Pav Lucistnik. Bluetooth is a wireless technology for creating personal
 networks operating in the 2.4 GHz unlicensed band, with a
 range of 10 meters. Networks are usually formed ad-hoc from
 portable devices such as cellular phones, handhelds, and
 laptops. Unlike Wi-Fi wireless technology, Bluetooth offers
 higher level service profiles, such as
 FTP-like file servers, file pushing, voice
 transport, serial line emulation, and more.
This section describes the use of a USB
 Bluetooth dongle on a FreeBSD system. It then describes the
 various Bluetooth protocols and utilities.
31.5.1. Loading Bluetooth Support
The Bluetooth stack in FreeBSD is implemented using the
	netgraph(4) framework. A broad variety of Bluetooth
	USB dongles is supported by ng_ubt(4).
	Broadcom BCM2033 based Bluetooth devices are supported by the
	ubtbcmfw(4) and ng_ubt(4) drivers. The 3Com
	Bluetooth PC Card 3CRWB60-A is supported by the
	ng_bt3c(4) driver. Serial and UART based Bluetooth
	devices are supported by sio(4), ng_h4(4), and
	hcseriald(8).
Before attaching a device, determine which of the above
	drivers it uses, then load the driver. For example, if the
	device uses the ng_ubt(4) driver:
kldload ng_ubt
If the Bluetooth device will be attached to the system
	during system startup, the system can be configured to load
	the module at boot time by adding the driver to
	/boot/loader.conf:
ng_ubt_load="YES"
Once the driver is loaded, plug in the
	USB dongle. If the driver load was
	successful, output similar to the following should appear on
	the console and in
	/var/log/messages:
ubt0: vendor 0x0a12 product 0x0001, rev 1.10/5.25, addr 2
ubt0: Interface 0 endpoints: interrupt=0x81, bulk-in=0x82, bulk-out=0x2
ubt0: Interface 1 (alt.config 5) endpoints: isoc-in=0x83, isoc-out=0x3,
 wMaxPacketSize=49, nframes=6, buffer size=294
To start and stop the Bluetooth stack, use its startup
	script. It is a good idea to stop the stack before unplugging
	the device. Starting the bluetooth stack might require
	hcsecd(8) to be started. When starting the stack, the
	output should be similar to the following:
service bluetooth start ubt0
BD_ADDR: 00:02:72:00:d4:1a
Features: 0xff 0xff 0xf 00 00 00 00 00
<3-Slot> <5-Slot> <Encryption> <Slot offset>
<Timing accuracy> <Switch> <Hold mode> <Sniff mode>
<Park mode> <RSSI> <Channel quality> <SCO link>
<HV2 packets> <HV3 packets> <u-law log> <A-law log> <CVSD>
<Paging scheme> <Power control> <Transparent SCO data>
Max. ACL packet size: 192 bytes
Number of ACL packets: 8
Max. SCO packet size: 64 bytes
Number of SCO packets: 8
31.5.2. Finding Other Bluetooth Devices
The Host Controller Interface (HCI)
	provides a uniform method for accessing Bluetooth baseband
	capabilities. In FreeBSD, a netgraph HCI node
	is created for each Bluetooth device. For more details, refer
	to ng_hci(4).
One of the most common tasks is discovery of Bluetooth
	devices within RF proximity. This
	operation is called inquiry. Inquiry and
	other HCI related operations are done using
	hccontrol(8). The example below shows how to find out
	which Bluetooth devices are in range. The list of devices
	should be displayed in a few seconds. Note that a remote
	device will only answer the inquiry if it is set to
	discoverable mode.
% hccontrol -n ubt0hci inquiry
Inquiry result, num_responses=1
Inquiry result #0
 BD_ADDR: 00:80:37:29:19:a4
 Page Scan Rep. Mode: 0x1
 Page Scan Period Mode: 00
 Page Scan Mode: 00
 Class: 52:02:04
 Clock offset: 0x78ef
Inquiry complete. Status: No error [00]
The BD_ADDR is the unique address of a
	Bluetooth device, similar to the MAC
	address of a network card. This address is needed for further
	communication with a device and it is possible to assign a
	human readable name to a BD_ADDR.
	Information regarding the known Bluetooth hosts is contained
	in /etc/bluetooth/hosts. The following
	example shows how to obtain the human readable name that was
	assigned to the remote device:
% hccontrol -n ubt0hci remote_name_request 00:80:37:29:19:a4
BD_ADDR: 00:80:37:29:19:a4
Name: Pav's T39
If an inquiry is performed on a remote Bluetooth device,
	it will find the computer as
	“your.host.name (ubt0)”. The name assigned to
	the local device can be changed at any time.
Remote devices can be assigned aliases in
	/etc/bluetooth/hosts. More information
	about /etc/bluetooth/hosts file might be
	found in bluetooth.hosts(5).
The Bluetooth system provides a point-to-point connection
	between two Bluetooth units, or a point-to-multipoint
	connection which is shared among several Bluetooth devices.
	The following example shows how to create a connection to a
	remote device:
% hccontrol -n ubt0hci create_connection BT_ADDR
create_connection accepts
	BT_ADDR as well as host aliases in
	/etc/bluetooth/hosts.
The following example shows how to obtain the list of
	active baseband connections for the local device:
% hccontrol -n ubt0hci read_connection_list
Remote BD_ADDR Handle Type Mode Role Encrypt Pending Queue State
00:80:37:29:19:a4 41 ACL 0 MAST NONE 0 0 OPEN
A connection handle is useful when
	termination of the baseband connection is required, though
	it is normally not required to do this by hand. The stack
	will automatically terminate inactive baseband
	connections.
hccontrol -n ubt0hci disconnect 41
Connection handle: 41
Reason: Connection terminated by local host [0x16]
Type hccontrol help for a complete
	listing of available HCI commands. Most
	of the HCI commands do not require
	superuser privileges.
31.5.3. Device Pairing
By default, Bluetooth communication is not authenticated,
	and any device can talk to any other device. A Bluetooth
	device, such as a cellular phone, may choose to require
	authentication to provide a particular service. Bluetooth
	authentication is normally done with a
	PIN code, an ASCII
	string up to 16 characters in length. The user is required
	to enter the same PIN code on both devices.
	Once the user has entered the PIN code,
	both devices will generate a link key.
	After that, the link key can be stored either in the devices
	or in a persistent storage. Next time, both devices will
	use the previously generated link key. This procedure is
	called pairing. Note that if the link
	key is lost by either device, the pairing must be
	repeated.
The hcsecd(8) daemon is responsible for handling
	Bluetooth authentication requests. The default configuration
	file is /etc/bluetooth/hcsecd.conf. An
	example section for a cellular phone with the
	PIN code set to 1234 is
	shown below:
device {
 bdaddr 00:80:37:29:19:a4;
 name "Pav's T39";
 key nokey;
 pin "1234";
 }
The only limitation on PIN codes is
	length. Some devices, such as Bluetooth headsets, may have
	a fixed PIN code built in. The
	-d switch forces hcsecd(8) to stay in
	the foreground, so it is easy to see what is happening. Set
	the remote device to receive pairing and initiate the
	Bluetooth connection to the remote device. The remote device
	should indicate that pairing was accepted and request the
	PIN code. Enter the same
	PIN code listed in
	hcsecd.conf. Now the computer and the
	remote device are paired. Alternatively, pairing can be
	initiated on the remote device.
The following line can be added to
	/etc/rc.conf to configure hcsecd(8)
	to start automatically on system start:
hcsecd_enable="YES"
The following is a sample of the hcsecd(8) daemon
	output:
hcsecd[16484]: Got Link_Key_Request event from 'ubt0hci', remote bdaddr 0:80:37:29:19:a4
hcsecd[16484]: Found matching entry, remote bdaddr 0:80:37:29:19:a4, name 'Pav's T39', link key doesn't exist
hcsecd[16484]: Sending Link_Key_Negative_Reply to 'ubt0hci' for remote bdaddr 0:80:37:29:19:a4
hcsecd[16484]: Got PIN_Code_Request event from 'ubt0hci', remote bdaddr 0:80:37:29:19:a4
hcsecd[16484]: Found matching entry, remote bdaddr 0:80:37:29:19:a4, name 'Pav's T39', PIN code exists
hcsecd[16484]: Sending PIN_Code_Reply to 'ubt0hci' for remote bdaddr 0:80:37:29:19:a4
31.5.4. Network Access with
	PPP Profiles
A Dial-Up Networking (DUN) profile can
	be used to configure a cellular phone as a wireless modem for
	connecting to a dial-up Internet access server. It can also
	be used to configure a computer to receive data calls from a
	cellular phone.
Network access with a PPP profile can
	be used to provide LAN access for a single
	Bluetooth device or multiple Bluetooth devices. It can also
	provide PC to PC
	connection using PPP networking over serial
	cable emulation.
In FreeBSD, these profiles are implemented with ppp(8)
	and the rfcomm_pppd(8) wrapper which converts a
	Bluetooth connection into something
	PPP can use. Before a profile can be used,
	a new PPP label must be created in
	/etc/ppp/ppp.conf. Consult
	rfcomm_pppd(8) for examples.
In this example, rfcomm_pppd(8) is used to open a
	connection to a remote device with a
	BD_ADDR of
	00:80:37:29:19:a4 on a
	DUN RFCOMM
	channel:
rfcomm_pppd -a 00:80:37:29:19:a4 -c -C dun -l rfcomm-dialup
The actual channel number will be obtained from the remote
	device using the SDP protocol. It is
	possible to specify the RFCOMM channel by
	hand, and in this case rfcomm_pppd(8) will not perform
	the SDP query. Use sdpcontrol(8) to
	find out the RFCOMM channel on the remote
	device.
In order to provide network access with the
	PPP LAN service,
	sdpd(8) must be running and a new entry for
	LAN clients must be created in
	/etc/ppp/ppp.conf. Consult
	rfcomm_pppd(8) for examples. Finally, start the
	RFCOMM PPP server on a
	valid RFCOMM channel number. The
	RFCOMM PPP server will
	automatically register the Bluetooth LAN
	service with the local SDP daemon. The
	example below shows how to start the RFCOMM
	PPP server.
rfcomm_pppd -s -C 7 -l rfcomm-server
31.5.5. Bluetooth Protocols
This section provides an overview of the various Bluetooth
	protocols, their function, and associated utilities.
31.5.5.1. Logical Link Control and Adaptation Protocol
	 (L2CAP)
The Logical Link Control and Adaptation Protocol
	 (L2CAP) provides connection-oriented and
	 connectionless data services to upper layer protocols.
	 L2CAP permits higher level protocols and
	 applications to transmit and receive
	 L2CAP data packets up to 64 kilobytes in
	 length.
L2CAP is based around the concept of
	 channels. A channel is a logical
	 connection on top of a baseband connection, where each
	 channel is bound to a single protocol in a many-to-one
	 fashion. Multiple channels can be bound to the same
	 protocol, but a channel cannot be bound to multiple
	 protocols. Each L2CAP packet received on
	 a channel is directed to the appropriate higher level
	 protocol. Multiple channels can share the same baseband
	 connection.
In FreeBSD, a netgraph L2CAP node is
	 created for each Bluetooth device. This node is normally
	 connected to the downstream Bluetooth HCI
	 node and upstream Bluetooth socket nodes. The default name
	 for the L2CAP node is
	 “devicel2cap”. For more details refer to
	 ng_l2cap(4).
A useful command is l2ping(8), which can be used to
	 ping other devices. Some Bluetooth implementations might
	 not return all of the data sent to them, so 0
	 bytes in the following example is normal.
l2ping -a 00:80:37:29:19:a4
0 bytes from 0:80:37:29:19:a4 seq_no=0 time=48.633 ms result=0
0 bytes from 0:80:37:29:19:a4 seq_no=1 time=37.551 ms result=0
0 bytes from 0:80:37:29:19:a4 seq_no=2 time=28.324 ms result=0
0 bytes from 0:80:37:29:19:a4 seq_no=3 time=46.150 ms result=0
The l2control(8) utility is used to perform various
	 operations on L2CAP nodes. This example
	 shows how to obtain the list of logical connections
	 (channels) and the list of baseband connections for the
	 local device:
% l2control -a 00:02:72:00:d4:1a read_channel_list
L2CAP channels:
Remote BD_ADDR SCID/ DCID PSM IMTU/ OMTU State
00:07:e0:00:0b:ca 66/ 64 3 132/ 672 OPEN
% l2control -a 00:02:72:00:d4:1a read_connection_list
L2CAP connections:
Remote BD_ADDR Handle Flags Pending State
00:07:e0:00:0b:ca 41 O 0 OPEN
Another diagnostic tool is btsockstat(1). It is
	 similar to netstat(1), but for Bluetooth
	 network-related data structures. The example below shows
	 the same logical connection as l2control(8)
	 above.
% btsockstat
Active L2CAP sockets
PCB Recv-Q Send-Q Local address/PSM Foreign address CID State
c2afe900 0 0 00:02:72:00:d4:1a/3 00:07:e0:00:0b:ca 66 OPEN
Active RFCOMM sessions
L2PCB PCB Flag MTU Out-Q DLCs State
c2afe900 c2b53380 1 127 0 Yes OPEN
Active RFCOMM sockets
PCB Recv-Q Send-Q Local address Foreign address Chan DLCI State
c2e8bc80 0 250 00:02:72:00:d4:1a 00:07:e0:00:0b:ca 3 6 OPEN
31.5.5.2. Radio Frequency Communication
	 (RFCOMM)
The RFCOMM protocol provides
	 emulation of serial ports over the L2CAP
	 protocol. RFCOMM is a simple transport
	 protocol, with additional provisions for emulating the 9
	 circuits of RS-232 (EIATIA-232-E) serial ports. It
	 supports up to 60 simultaneous connections
	 (RFCOMM channels) between two Bluetooth
	 devices.
For the purposes of RFCOMM, a
	 complete communication path involves two applications
	 running on the communication endpoints with a communication
	 segment between them. RFCOMM is intended
	 to cover applications that make use of the serial ports of
	 the devices in which they reside. The communication segment
	 is a direct connect Bluetooth link from one device to
	 another.
RFCOMM is only concerned with the
	 connection between the devices in the direct connect case,
	 or between the device and a modem in the network case.
	 RFCOMM can support other configurations,
	 such as modules that communicate via Bluetooth wireless
	 technology on one side and provide a wired interface on the
	 other side.
In FreeBSD, RFCOMM is implemented at the
	 Bluetooth sockets layer.
31.5.5.3. Service Discovery Protocol
	 (SDP)
The Service Discovery Protocol (SDP)
	 provides the means for client applications to discover the
	 existence of services provided by server applications as
	 well as the attributes of those services. The attributes of
	 a service include the type or class of service offered and
	 the mechanism or protocol information needed to utilize the
	 service.
SDP involves communication between a
	 SDP server and a SDP
	 client. The server maintains a list of service records that
	 describe the characteristics of services associated with the
	 server. Each service record contains information about a
	 single service. A client may retrieve information from a
	 service record maintained by the SDP
	 server by issuing a SDP request. If the
	 client, or an application associated with the client,
	 decides to use a service, it must open a separate connection
	 to the service provider in order to utilize the service.
	 SDP provides a mechanism for discovering
	 services and their attributes, but it does not provide a
	 mechanism for utilizing those services.
Normally, a SDP client searches for
	 services based on some desired characteristics of the
	 services. However, there are times when it is desirable to
	 discover which types of services are described by an
	 SDP server's service records without any
	 prior information about the services. This process of
	 looking for any offered services is called
	 browsing.
The Bluetooth SDP server,
	 sdpd(8), and command line client, sdpcontrol(8),
	 are included in the standard FreeBSD installation. The
	 following example shows how to perform a
	 SDP browse query.
% sdpcontrol -a 00:01:03:fc:6e:ec browse
Record Handle: 00000000
Service Class ID List:
 Service Discovery Server (0x1000)
Protocol Descriptor List:
 L2CAP (0x0100)
 Protocol specific parameter #1: u/int/uuid16 1
 Protocol specific parameter #2: u/int/uuid16 1

Record Handle: 0x00000001
Service Class ID List:
 Browse Group Descriptor (0x1001)

Record Handle: 0x00000002
Service Class ID List:
 LAN Access Using PPP (0x1102)
Protocol Descriptor List:
 L2CAP (0x0100)
 RFCOMM (0x0003)
 Protocol specific parameter #1: u/int8/bool 1
Bluetooth Profile Descriptor List:
 LAN Access Using PPP (0x1102) ver. 1.0
Note that each service has a list of attributes, such
	 as the RFCOMM channel. Depending on the
	 service, the user might need to make note of some of the
	 attributes. Some Bluetooth implementations do not support
	 service browsing and may return an empty list. In this
	 case, it is possible to search for the specific service.
	 The example below shows how to search for the
	 OBEX Object Push
	 (OPUSH) service:
% sdpcontrol -a 00:01:03:fc:6e:ec search OPUSH
Offering services on FreeBSD to Bluetooth clients is done
	 with the sdpd(8) server. The following line can be
	 added to /etc/rc.conf:
sdpd_enable="YES"
Then the sdpd(8) daemon can be started with:
service sdpd start
The local server application that wants to provide a
	 Bluetooth service to remote clients will register the
	 service with the local SDP daemon. An
	 example of such an application is rfcomm_pppd(8). Once
	 started, it will register the Bluetooth LAN service with the
	 local SDP daemon.
The list of services registered with the local
	 SDP server can be obtained by issuing a
	 SDP browse query via the local control
	 channel:
sdpcontrol -l browse
31.5.5.4. OBEX Object Push
	 (OPUSH)
Object Exchange (OBEX) is a widely
	 used protocol for simple file transfers between mobile
	 devices. Its main use is in infrared communication, where
	 it is used for generic file transfers between notebooks or
	 PDAs, and for sending business cards or
	 calendar entries between cellular phones and other devices
	 with Personal Information Manager (PIM)
	 applications.
The OBEX server and client are
	 implemented by obexapp, which can
	 be installed using the comms/obexapp
	 package or port.
The OBEX client is used to push
	 and/or pull objects from the OBEX server.
	 An example object is a business card or an appointment.
	 The OBEX client can obtain the
	 RFCOMM channel number from the remote
	 device via SDP. This can be done by
	 specifying the service name instead of the
	 RFCOMM channel number. Supported service
	 names are: IrMC, FTRN,
	 and OPUSH. It is also possible to
	 specify the RFCOMM channel as a number.
	 Below is an example of an OBEX session
	 where the device information object is pulled from the
	 cellular phone, and a new object, the business card, is
	 pushed into the phone's directory.
% obexapp -a 00:80:37:29:19:a4 -C IrMC
obex> get telecom/devinfo.txt devinfo-t39.txt
Success, response: OK, Success (0x20)
obex> put new.vcf
Success, response: OK, Success (0x20)
obex> di
Success, response: OK, Success (0x20)
In order to provide the OPUSH
	 service, sdpd(8) must be running and a root folder,
	 where all incoming objects will be stored, must be created.
	 The default path to the root folder is
	 /var/spool/obex. Finally, start the
	 OBEX server on a valid
	 RFCOMM channel number. The
	 OBEX server will automatically register
	 the OPUSH service with the local
	 SDP daemon. The example below shows how
	 to start the OBEX server.
obexapp -s -C 10
31.5.5.5. Serial Port Profile (SPP)
The Serial Port Profile (SPP) allows
	 Bluetooth devices to perform serial cable emulation. This
	 profile allows legacy applications to use Bluetooth as a
	 cable replacement, through a virtual serial port
	 abstraction.
In FreeBSD, rfcomm_sppd(1) implements
	 SPP and a pseudo tty is used as a virtual
	 serial port abstraction. The example below shows how to
	 connect to a remote device's serial port service. A
	 RFCOMM channel does not have to be
	 specified as rfcomm_sppd(1) can obtain it from the
	 remote device via SDP. To override this,
	 specify a RFCOMM channel on the command
	 line.
rfcomm_sppd -a 00:07:E0:00:0B:CA -t
rfcomm_sppd[94692]: Starting on /dev/pts/6...
/dev/pts/6
Once connected, the pseudo tty can be used as serial
	 port:
cu -l /dev/pts/6
The pseudo tty is printed on stdout and can be read by
	 wrapper scripts:
PTS=`rfcomm_sppd -a 00:07:E0:00:0B:CA -t`
cu -l $PTS
31.5.6. Troubleshooting
By default, when FreeBSD is accepting a new connection, it
	tries to perform a role switch and become master. Some older
	Bluetooth devices which do not support role switching will not
	be able to connect. Since role switching is performed when a
	new connection is being established, it is not possible to ask
	the remote device if it supports role switching. However,
	there is a HCI option to disable role
	switching on the local side:
hccontrol -n ubt0hci write_node_role_switch 0
To display Bluetooth packets, use the third-party package
	hcidump, which can be installed
	using the comms/hcidump package or port.
	This utility is similar to tcpdump(1) and can be used to
	display the contents of Bluetooth packets on the terminal and
	to dump the Bluetooth packets to a file.
19.7. Additional Resources
	OpenZFS

	FreeBSD
	 Wiki - ZFS Tuning

	Oracle
	 Solaris ZFS Administration
	 Guide

	Calomel
	 Blog - ZFS Raidz Performance, Capacity
	 and Integrity

13.6. OpenSSL
Written
	 by Tom Rhodes. OpenSSL is an open source
 implementation of the SSL and
 TLS protocols. It provides an encryption
 transport layer on top of the normal communications layer,
 allowing it to be intertwined with many network applications and
 services.
The version of OpenSSL included
 in FreeBSD supports the Secure Sockets Layer 3.0 (SSLv3)
 and Transport Layer Security 1.0/1.1/1.2 (TLSv1/TLSv1.1/TLSv1.2)
 network security
 protocols and can be used as a general cryptographic
 library. In FreeBSD 12.0-RELEASE and above, OpenSSL also supports
 Transport Layer Security 1.3 (TLSv1.3).
OpenSSL is often used to encrypt
 authentication of mail clients and to secure web based
 transactions such as credit card payments. Some ports, such as
 www/apache24 and
 databases/postgresql11-server, include a
 compile option for building with
 OpenSSL. If selected, the port will
 add support using OpenSSL from the
 base system. To instead have the port compile against
 OpenSSL from the
 security/openssl port, add the following to
 /etc/make.conf:
DEFAULT_VERSIONS+= ssl=openssl
Another common use of OpenSSL is
 to provide certificates for use with software applications.
 Certificates can be used to verify the credentials of a company
 or individual. If a certificate has not been signed by an
 external Certificate Authority
 (CA), such as http://www.verisign.com,
 the application that uses the certificate will produce a
 warning. There is a cost associated with obtaining a signed
 certificate and using a signed certificate is not mandatory as
 certificates can be self-signed. However, using an external
 authority will prevent warnings and can put users at
 ease.
This section demonstrates how to create and use certificates
 on a FreeBSD system. Refer to Section 29.5.2, “Configuring an LDAP Server” for an
 example of how to create a CA for signing
 one's own certificates.
For more information about SSL, read the
 free OpenSSL
	Cookbook.
13.6.1. Generating Certificates
To generate a certificate that will be signed by an
	external CA, issue the following command
	and input the information requested at the prompts. This
	input information will be written to the certificate. At the
	Common Name prompt, input the fully
	qualified name for the system that will use the certificate.
	If this name does not match the server, the application
	verifying the certificate will issue a warning to the user,
	rendering the verification provided by the certificate as
	useless.
openssl req -new -nodes -out req.pem -keyout cert.key -sha256 -newkey rsa:2048
Generating a 2048 bit RSA private key
..................+++
...+++
writing new private key to 'cert.key'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:PA
Locality Name (eg, city) []:Pittsburgh
Organization Name (eg, company) [Internet Widgits Pty Ltd]:My Company
Organizational Unit Name (eg, section) []:Systems Administrator
Common Name (eg, YOUR name) []:localhost.example.org
Email Address []:trhodes@FreeBSD.org

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:Another Name
Other options, such as the expire time and alternate
	encryption algorithms, are available when creating a
	certificate. A complete list of options is described in
	openssl(1).
This command will create two files in the current
	directory. The certificate request,
	req.pem, can be sent to a
	CA who will validate the entered
	credentials, sign the request, and return the signed
	certificate. The second file,
	cert.key, is the private key for the
	certificate and should be stored in a secure location. If
	this falls in the hands of others, it can be used to
	impersonate the user or the server.
Alternately, if a signature from a CA
	is not required, a self-signed certificate can be created.
	First, generate the RSA key:
openssl genrsa -rand -genkey -out cert.key 2048
0 semi-random bytes loaded
Generating RSA private key, 2048 bit long modulus
...+++
...+++
e is 65537 (0x10001)
Use this key to create a self-signed certificate.
	Follow the usual prompts for creating a certificate:
openssl req -new -x509 -days 365 -key cert.key -out cert.crt -sha256
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:PA
Locality Name (eg, city) []:Pittsburgh
Organization Name (eg, company) [Internet Widgits Pty Ltd]:My Company
Organizational Unit Name (eg, section) []:Systems Administrator
Common Name (e.g. server FQDN or YOUR name) []:localhost.example.org
Email Address []:trhodes@FreeBSD.org
This will create two new files in the current directory: a
	private key file
	cert.key, and the certificate itself,
	cert.crt. These should be placed in a
	directory, preferably under /etc/ssl/,
	which is readable only by root. Permissions of
	0700 are appropriate for these files and
	can be set using chmod.
13.6.2. Using Certificates
One use for a certificate is to encrypt connections to the
	Sendmail mail server in order to
	prevent the use of clear text authentication.
Note:
Some mail clients will display an error if the user has
	 not installed a local copy of the certificate. Refer to the
	 documentation included with the software for more
	 information on certificate installation.

In FreeBSD 10.0-RELEASE and above, it is possible to create a
	self-signed certificate for
	Sendmail automatically. To enable
	this, add the following lines to
	/etc/rc.conf:
sendmail_enable="YES"
sendmail_cert_create="YES"
sendmail_cert_cn="localhost.example.org"
This will automatically create a self-signed certificate,
	/etc/mail/certs/host.cert, a signing key,
	/etc/mail/certs/host.key, and a
	CA certificate,
	/etc/mail/certs/cacert.pem. The
	certificate will use the Common Name
	specified in sendmail_cert_cn. After saving
	the edits, restart Sendmail:
service sendmail restart
If all went well, there will be no error messages in
	/var/log/maillog. For a simple test,
	connect to the mail server's listening port using
	telnet:
telnet example.com 25
Trying 192.0.34.166...
Connected to example.com.
Escape character is '^]'.
220 example.com ESMTP Sendmail 8.14.7/8.14.7; Fri, 18 Apr 2014 11:50:32 -0400 (EDT)
ehlo example.com
250-example.com Hello example.com [192.0.34.166], pleased to meet you
250-ENHANCEDSTATUSCODES
250-PIPELINING
250-8BITMIME
250-SIZE
250-DSN
250-ETRN
250-AUTH LOGIN PLAIN
250-STARTTLS
250-DELIVERBY
250 HELP
quit
221 2.0.0 example.com closing connection
Connection closed by foreign host.
If the STARTTLS line appears in the
	output, everything is working correctly.
Chapter 12. The FreeBSD Booting Process
12.1. Synopsis
The process of starting a computer and loading the operating
 system is referred to as “the bootstrap process”,
 or “booting”. FreeBSD's boot process provides a great
 deal of flexibility in customizing what happens when the system
 starts, including the ability to select from different operating
 systems installed on the same computer, different versions of
 the same operating system, or a different installed
 kernel.
This chapter details the configuration options that can be
 set. It demonstrates how to customize the FreeBSD boot process,
 including everything that happens until the FreeBSD kernel has
 started, probed for devices, and started init(8). This
 occurs when the text color of the boot messages changes from
 bright white to grey.
After reading this chapter, you will recognize:
	The components of the FreeBSD bootstrap system and how they
	 interact.

	The options that can be passed to the components in the
	 FreeBSD bootstrap in order to control the boot process.

	How to configure a customized boot splash screen.

	The basics of setting device hints.

	How to boot into single- and multi-user mode and how to
	 properly shut down a FreeBSD system.

Note:
This chapter only describes the boot process for FreeBSD
	running on x86 and amd64 systems.

15.2. Key Terms
The following key terms are used when referring to the
 MAC framework:
	compartment: a set of programs and
	 data to be partitioned or separated, where users are given
	 explicit access to specific component of a system. A
	 compartment represents a grouping, such as a work group,
	 department, project, or topic. Compartments make it
	 possible to implement a need-to-know-basis security
	 policy.

	integrity: the level of trust which
	 can be placed on data. As the integrity of the data is
	 elevated, so does the ability to trust that data.

	level: the increased or decreased
	 setting of a security attribute. As the level increases,
	 its security is considered to elevate as well.

	label: a security attribute which
	 can be applied to files, directories, or other items in the
	 system. It could be considered a confidentiality stamp.
	 When a label is placed on a file, it describes the security
	 properties of that file and will only permit access by
	 files, users, and resources with a similar security setting.
	 The meaning and interpretation of label values depends on
	 the policy configuration. Some policies treat a label as
	 representing the integrity or secrecy of an object while
	 other policies might use labels to hold rules for
	 access.

	multilabel: this property is a file
	 system option which can be set in single-user mode using
	 tunefs(8), during boot using fstab(5), or during
	 the creation of a new file system. This option permits
	 an administrator to apply different MAC
	 labels on different objects. This option only applies to
	 security policy modules which support labeling.

	single label: a policy where the
	 entire file system uses one label to enforce access control
	 over the flow of data. Whenever multilabel
	 is not set, all files will conform to the same label
	 setting.

	object: an entity through which
	 information flows under the direction of a
	 subject. This includes directories,
	 files, fields, screens, keyboards, memory, magnetic storage,
	 printers or any other data storage or moving device. An
	 object is a data container or a system resource. Access to
	 an object effectively means access to its data.

	subject: any active entity that
	 causes information to flow between
	 objects such as a user, user process,
	 or system process. On FreeBSD, this is almost always a
	 thread acting in a process on behalf of a user.

	policy: a collection of rules
	 which defines how objectives are to be achieved. A policy
	 usually documents how certain items are to be handled. This
	 chapter considers a policy to be a collection of rules which
	 controls the flow of data and information and defines who
	 has access to that data and information.

	high-watermark: this type of
	 policy permits the raising of security levels for the
	 purpose of accessing higher level information. In most
	 cases, the original level is restored after the process is
	 complete. Currently, the FreeBSD MAC
	 framework does not include this type of policy.

	low-watermark: this type of policy
	 permits lowering security levels for the purpose of
	 accessing information which is less secure. In most cases,
	 the original security level of the user is restored after
	 the process is complete. The only security policy module in
	 FreeBSD to use this is mac_lomac(4).

	sensitivity: usually used when
	 discussing Multilevel Security (MLS). A
	 sensitivity level describes how important or secret the data
	 should be. As the sensitivity level increases, so does the
	 importance of the secrecy, or confidentiality, of the
	 data.

15.3. Understanding MAC Labels
A MAC label is a security attribute
 which may be applied to subjects and objects throughout the
 system. When setting a label, the administrator must
 understand its implications in order to prevent unexpected or
 undesired behavior of the system. The attributes available on
 an object depend on the loaded policy module, as policy modules
 interpret their attributes in different ways.
The security label on an object is used as a part of a
 security access control decision by a policy. With some
 policies, the label contains all of the information necessary
 to make a decision. In other policies, the labels may be
 processed as part of a larger rule set.
There are two types of label policies: single label and
 multi label. By default, the system will use single label. The
 administrator should be aware of the pros and cons of each in
 order to implement policies which meet the requirements of the
 system's security model.
A single label security policy only permits one label to be
 used for every subject or object. Since a single label policy
 enforces one set of access permissions across the entire system,
 it provides lower administration overhead, but decreases the
 flexibility of policies which support labeling. However, in
 many environments, a single label policy may be all that is
 required.
A single label policy is somewhat similar to
 DAC as root configures the policies so
 that users are placed in the appropriate categories and access
 levels. A notable difference is that many policy modules can
 also restrict root.
 Basic control over objects will then be released to the group,
 but root may revoke or
 modify the settings at any time.
When appropriate, a multi label policy can be set on a
 UFS file system by passing
 multilabel to tunefs(8). A multi label
 policy permits each subject or object to have its own
 independent MAC label. The decision to use a
 multi label or single label policy is only required for policies
 which implement the labeling feature, such as
 biba, lomac, and
 mls. Some policies, such as
 seeotheruids, portacl and
 partition, do not use labels at all.
Using a multi label policy on a partition and establishing a
 multi label security model can increase administrative overhead
 as everything in that file system has a label. This includes
 directories, files, and even device nodes.
The following command will set multilabel
 on the specified UFS file system. This may
 only be done in single-user mode and is not a requirement for
 the swap file system:
tunefs -l enable /
Note:
Some users have experienced problems with setting the
	multilabel flag on the root partition. If
	this is the case, please review Section 15.8, “Troubleshooting the MAC Framework”.

Since the multi label policy is set on a per-file system
 basis, a multi label policy may not be needed if the file system
 layout is well designed. Consider an example security
 MAC model for a FreeBSD web server. This
 machine uses the single label, biba/high, for
 everything in the default file systems. If the web server needs
 to run at biba/low to prevent write up
 capabilities, it could be installed to a separate
 UFS /usr/local file
 system set at biba/low.
15.3.1. Label Configuration
Virtually all aspects of label policy module configuration
	will be performed using the base system utilities. These
	commands provide a simple interface for object or subject
	configuration or the manipulation and verification of
	the configuration.
All configuration may be done using
	setfmac, which is used to set
	MAC labels on system objects, and
	setpmac, which is used to set the labels on
	system subjects. For example, to set the
	biba MAC label to
	high on test:
setfmac biba/high test
If the configuration is successful, the prompt will be
	returned without error. A common error is
	Permission denied which usually occurs
	when the label is being set or modified on a restricted
	object. Other conditions may produce different failures. For
	instance, the file may not be owned by the user attempting to
	relabel the object, the object may not exist, or the object
	may be read-only. A mandatory policy will not allow the
	process to relabel the file, maybe because of a property of
	the file, a property of the process, or a property of the
	proposed new label value. For example, if a user running at
	low integrity tries to change the label of a high integrity
	file, or a user running at low integrity tries to change the
	label of a low integrity file to a high integrity label, these
	operations will fail.
The system administrator may use
	setpmac to override the policy module's
	settings by assigning a different label to the invoked
	process:
setfmac biba/high test
Permission denied
setpmac biba/low setfmac biba/high test
getfmac test
test: biba/high
For currently running processes, such as
	sendmail,
	getpmac is usually used instead. This
	command takes a process ID (PID) in place
	of a command name. If users attempt to manipulate a file not
	in their access, subject to the rules of the loaded policy
	modules, the Operation not permitted
	error will be displayed.
15.3.2. Predefined Labels
A few FreeBSD policy modules which support the labeling
	feature offer three predefined labels: low,
	equal, and high,
	where:
	low is considered the lowest label
	 setting an object or subject may have. Setting this on
	 objects or subjects blocks their access to objects or
	 subjects marked high.

	equal sets the subject or object to
	 be disabled or unaffected and should only be placed on
	 objects considered to be exempt from the policy.

	high grants an object or subject
	 the highest setting available in the Biba and
	 MLS policy modules.

Such policy modules include mac_biba(4),
	mac_mls(4) and mac_lomac(4). Each of the predefined
	labels establishes a different information flow directive.
	Refer to the manual page of the module to determine the traits
	of the generic label configurations.
15.3.3. Numeric Labels
The Biba and MLS policy modules support
	a numeric label which may be set to indicate the precise level
	of hierarchical control. This numeric level is used to
	partition or sort information into different groups of
	classification, only permitting access to that group or a
	higher group level. For example:
biba/10:2+3+6(5:2+3-20:2+3+4+5+6)
may be interpreted as “Biba Policy Label/Grade
	 10:Compartments 2, 3 and 6: (grade 5 ...”)
In this example, the first grade would be considered the
	effective grade with effective compartments, the second grade
	is the low grade, and the last one is the high grade. In most
	configurations, such fine-grained settings are not needed as
	they are considered to be advanced configurations.
System objects only have a current grade and compartment.
	System subjects reflect the range of available rights in the
	system, and network interfaces, where they are used for access
	control.
The grade and compartments in a subject and object pair
	are used to construct a relationship known as
	dominance, in which a subject dominates
	an object, the object dominates the subject, neither dominates
	the other, or both dominate each other. The “both
	 dominate” case occurs when the two labels are equal.
	Due to the information flow nature of Biba, a user has rights
	to a set of compartments that might correspond to projects,
	but objects also have a set of compartments. Users may have
	to subset their rights using su or
	setpmac in order to access objects in a
	compartment from which they are not restricted.
15.3.4. User Labels
Users are required to have labels so that their files and
	processes properly interact with the security policy defined
	on the system. This is configured in
	/etc/login.conf using login classes.
	Every policy module that uses labels will implement the user
	class setting.
To set the user class default label which will be enforced
	by MAC, add a label entry.
	An example label entry containing every
	policy module is displayed below. Note that in a real
	configuration, the administrator would never enable every
	policy module. It is recommended that the rest of this
	chapter be reviewed before any configuration is
	implemented.
default:\
	:copyright=/etc/COPYRIGHT:\
	:welcome=/etc/motd:\
	:setenv=MAIL=/var/mail/$,BLOCKSIZE=K:\
	:path=~/bin:/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin:\
	:manpath=/usr/share/man /usr/local/man:\
	:nologin=/usr/sbin/nologin:\
	:cputime=1h30m:\
	:datasize=8M:\
	:vmemoryuse=100M:\
	:stacksize=2M:\
	:memorylocked=4M:\
	:memoryuse=8M:\
	:filesize=8M:\
	:coredumpsize=8M:\
	:openfiles=24:\
	:maxproc=32:\
	:priority=0:\
	:requirehome:\
	:passwordtime=91d:\
	:umask=022:\
	:ignoretime@:\
	:label=partition/13,mls/5,biba/10(5-15),lomac/10[2]:
While users can not modify the default value, they may
	change their label after they login, subject to the
	constraints of the policy. The example above tells the Biba
	policy that a process's minimum integrity is
	5, its maximum is 15,
	and the default effective label is 10. The
	process will run at 10 until it chooses to
	change label, perhaps due to the user using
	setpmac, which will be constrained by Biba
	to the configured range.
After any change to login.conf, the
	login class capability database must be rebuilt using
	cap_mkdb.
Many sites have a large number of users requiring
	several different user classes. In depth planning is
	required as this can become difficult to manage.
15.3.5. Network Interface Labels
Labels may be set on network interfaces to help control
	the flow of data across the network. Policies using network
	interface labels function in the same way that policies
	function with respect to objects. Users at high settings in
	Biba, for example, will not be permitted to access network
	interfaces with a label of low.
When setting the MAC label on network
	interfaces, maclabel may be passed to
	ifconfig:
ifconfig bge0 maclabel biba/equal
This example will set the MAC label of
	biba/equal on the bge0
	interface. When using a setting similar to
	biba/high(low-high), the entire label
	should be quoted to prevent an error from being
	returned.
Each policy module which supports labeling has a tunable
	which may be used to disable the MAC label
	on network interfaces. Setting the label to
	equal will have a similar effect. Review
	the output of sysctl, the policy manual
	pages, and the information in the rest of this chapter for
	more information on those tunables.
B.8. UNIX® History
	Lion, John Lion's Commentary on UNIX, 6th Ed.
	 With Source Code. ITP Media Group, 1996. ISBN
	 1573980137

	Raymond, Eric S. The New Hacker's Dictionary,
	 3rd edition. MIT Press, 1996. ISBN
	 0-262-68092-0. Also known as the Jargon
	 File

	Salus, Peter H. A quarter century of
	 UNIX. Addison-Wesley Publishing Company, Inc.,
	 1994. ISBN 0-201-54777-5

	Simon Garfinkel, Daniel Weise, Steven Strassmann.
	 The UNIX-HATERS Handbook. IDG Books
	 Worldwide, Inc., 1994. ISBN 1-56884-203-1. Out of print,
	 but available online.

	Don Libes, Sandy Ressler Life with
	 UNIX — special edition. Prentice-Hall,
	 Inc., 1989. ISBN 0-13-536657-7

	The BSD family tree.
	 https://svnweb.freebsd.org/base/head/share/misc/bsd-family-tree?view=co
	 or /usr/share/misc/bsd-family-tree
	 on a FreeBSD machine.

	Networked Computer Science Technical Reports
	 Library.

	Old BSD releases from the Computer Systems
	 Research group (CSRG). http://www.mckusick.com/csrg/:
	 The 4CD set covers all BSD versions from 1BSD to 4.4BSD and
	 4.4BSD-Lite2 (but not 2.11BSD, unfortunately). The last
	 disk also holds the final sources plus the SCCS
	 files.

FreeBSD Handbook
The FreeBSD Documentation Project

Revision: 54517Copyright © 1995-2020 The FreeBSD Documentation Project
CopyrightLegal NoticeLast modified on 2020-09-23 17:37:06 by mhorne.Abstract
Welcome to FreeBSD! This handbook covers the installation
	and day to day use of
	FreeBSD 12.1-RELEASE and
	FreeBSD 11.4-RELEASE. This book
	is the result of ongoing work by many individuals. Some
	sections might be outdated. Those interested in helping to
	update and expand this document should send email to the
	FreeBSD documentation project mailing list.
The latest version of this book is available from the
	FreeBSD web
	 site. Previous versions can be obtained from https://docs.FreeBSD.org/doc/.
	The book can be downloaded in a variety of formats and
	compression options from the FreeBSD
	 FTP server or one of the numerous
	mirror sites. Printed
	copies can be purchased at the
	FreeBSD
	 Mall. Searches can be performed on the handbook and
	other documents on the
	search
	 page.

 [

	 Split HTML
	
 /
 Single HTML
]

14.3. Creating and Controlling Jails
Some administrators divide jails into the following two
 types: “complete” jails, which resemble a real FreeBSD
 system, and “service” jails, dedicated to one
 application or service, possibly running with privileges. This
 is only a conceptual division and the process of building a jail
 is not affected by it. When creating a “complete”
 jail there are two options for the source of the userland: use
 prebuilt binaries (such as those supplied on an install media)
 or build from source.
14.3.1. Installing a Jail
14.3.1.1. To install a Jail from the Internet
The bsdinstall(8) tool can be used to fetch and
 install the binaries needed for a jail. This will walk through
 the picking of a mirror, which distributions will be installed
 into the destination directory, and some basic configuration
 of the jail:
bsdinstall jail /here/is/the/jail
Once the command is complete, the next step is configuring
 the host to run the jail.
14.3.1.2. To install a Jail from an ISO
To install the userland from installation media, first
 create the root directory for the jail. This can be done by
 setting the DESTDIR variable to the proper
 location.
Start a shell and define DESTDIR:
sh
export DESTDIR=/here/is/the/jail
Mount the install media as covered in mdconfig(8)
 when using the install ISO:
mount -t cd9660 /dev/`mdconfig -f cdimage.iso` /mnt
cd /mnt/usr/freebsd-dist/
Extract the binaries from the tarballs on the install media
 into the declared destination. Minimally, only the base set
 needs to be extracted, but a complete install can be performed
 when preferred.
To install just the base system:
tar -xf base.txz -C $DESTDIR
To install everything except the kernel:
for set in base ports; do tar -xf $set.txz -C $DESTDIR ; done
14.3.1.3. To build and install a Jail from source
The jail(8) manual page explains the procedure for
 building a jail:
setenv D /here/is/the/jail
mkdir -p $D [image: 1]
cd /usr/src
make buildworld [image: 2]
make installworld DESTDIR=$D [image: 3]
make distribution DESTDIR=$D [image: 4]
mount -t devfs devfs $D/dev [image: 5]
	[image: 1]
	Selecting a location for a jail is the best starting
	 point. This is where the jail will physically reside within
	 the file system of the jail's host. A good choice can be
	 /usr/jail/jailname,
	 where jailname is the hostname
	 identifying the jail. Usually, /usr/
	 has enough space for the jail file system, which for
	 “complete” jails is, essentially, a replication
	 of every file present in a default installation of the FreeBSD
	 base system.

	[image: 2]
	If you have already rebuilt your userland using
	 make world or
	 make buildworld, you can skip this step
	 and install your existing userland into the new jail.

	[image: 3]
	This command will populate the directory subtree chosen
	 as jail's physical location on the file system with the
	 necessary binaries, libraries, manual pages and so
	 on.

	[image: 4]
	The distribution target for
	 make installs every needed
	 configuration file. In simple words, it installs every
	 installable file of
	 /usr/src/etc/ to the
	 /etc directory of the
	 jail environment:
	 $D/etc/.

	[image: 5]
	Mounting the devfs(8) file system inside a jail is
	 not required. On the other hand, any, or almost any
	 application requires access to at least one device,
	 depending on the purpose of the given application. It is
	 very important to control access to devices from inside a
	 jail, as improper settings could permit an attacker to do
	 nasty things in the jail. Control over devfs(8) is
	 managed through rulesets which are described in the
	 devfs(8) and devfs.conf(5) manual pages.

14.3.2. Configuring the Host
Once a jail is installed, it can be started by using the
 jail(8) utility. The jail(8) utility takes four
 mandatory arguments which are described in the Section 14.1, “Synopsis”. Other arguments may be specified
 too, e.g., to run the jailed process with the credentials of a
 specific user. The
 command argument
 depends on the type of the jail; for a
 virtual system,
 /etc/rc is a good choice, since it will
 replicate the startup sequence of a real FreeBSD system. For a
 service jail, it depends on the service or
 application that will run within the jail.
Jails are often started at boot time and the FreeBSD
 rc mechanism provides an easy way to do
 this.
	Configure jail parameters in
	 jail.conf:
www {
 host.hostname = www.example.org; # Hostname
 ip4.addr = 192.168.0.10; # IP address of the jail
 path = "/usr/jail/www"; # Path to the jail
 devfs_ruleset = "www_ruleset"; # devfs ruleset
 mount.devfs; # Mount devfs inside the jail
 exec.start = "/bin/sh /etc/rc"; # Start command
 exec.stop = "/bin/sh /etc/rc.shutdown"; # Stop command
}
Configure jails to start at boot time in
	 rc.conf:
jail_enable="YES" # Set to NO to disable starting of any jails
The default startup of jails configured in
	 jail.conf(5), will run the /etc/rc
	 script of the jail, which assumes the jail is a complete
	 virtual system. For service jails, the default startup
	 command of the jail should be changed, by setting the
	 exec.start
	 option appropriately.
Note:
For a full list of available options, please see the
	 jail.conf(5) manual page.

service(8) can be used to start or stop a jail by hand,
 if an entry for it exists in
 jail.conf:
service jail start www
service jail stop www
Jails can be shut down with jexec(8). Use jls(8)
 to identify the jail's JID, then use
 jexec(8) to run the shutdown script in that jail.
jls
 JID IP Address Hostname Path
 3 192.168.0.10 www /usr/jail/www
jexec 3 /etc/rc.shutdown
More information about this can be found in the jail(8)
 manual page.
29.4. Network Information System
 (NIS)
Network Information System (NIS) is
 designed to centralize administration of UNIX®-like systems
 such as Solaris™, HP-UX, AIX®, Linux, NetBSD, OpenBSD, and
 FreeBSD. NIS was originally known as Yellow
 Pages but the name was changed due to trademark issues. This
 is the reason why NIS commands begin with
 yp.
NIS is a Remote Procedure Call
 (RPC)-based client/server system that allows
 a group of machines within an NIS domain to
 share a common set of configuration files. This permits a
 system administrator to set up NIS client
 systems with only minimal configuration data and to add, remove,
 or modify configuration data from a single location.
FreeBSD uses version 2 of the NIS
 protocol.
29.4.1. NIS Terms and Processes
Table 28.1 summarizes the terms and important processes
	used by NIS:
Table 29.1. NIS Terminology
	Term	Description
	NIS domain name	NIS servers and clients share
		an NIS domain name. Typically,
		this name does not have anything to do with
		DNS.
	rpcbind(8)	This service enables RPC and
		must be running in order to run an
		NIS server or act as an
		NIS client.
	ypbind(8)	This service binds an NIS
		client to its NIS server. It will
		take the NIS domain name and use
		RPC to connect to the server. It
		is the core of client/server communication in an
		NIS environment. If this service
		is not running on a client machine, it will not be
		able to access the NIS
		server.
	ypserv(8)	This is the process for the
		NIS server. If this service stops
		running, the server will no longer be able to respond
		to NIS requests so hopefully, there
		is a slave server to take over. Some non-FreeBSD clients
		will not try to reconnect using a slave server and the
		ypbind process may need to
		be restarted on these
		clients.
	rpc.yppasswdd(8)	This process only runs on
		NIS master servers. This daemon
		allows NIS clients to change their
		NIS passwords. If this daemon is
		not running, users will have to login to the
		NIS master server and change their
		passwords there.

29.4.2. Machine Types
There are three types of hosts in an
	NIS environment:
	NIS master server
This server acts as a central repository for host
	 configuration information and maintains the
	 authoritative copy of the files used by all of the
	 NIS clients. The
	 passwd, group,
	 and other various files used by NIS
	 clients are stored on the master server. While it is
	 possible for one machine to be an NIS
	 master server for more than one NIS
	 domain, this type of configuration will not be covered in
	 this chapter as it assumes a relatively small-scale
	 NIS environment.

	NIS slave servers
NIS slave servers maintain copies
	 of the NIS master's data files in
	 order to provide redundancy. Slave servers also help to
	 balance the load of the master server as
	 NIS clients always attach to the
	 NIS server which responds
	 first.

	NIS clients
NIS clients authenticate
	 against the NIS server during log
	 on.

Information in many files can be shared using
	NIS. The
	master.passwd,
	group, and hosts
	files are commonly shared via NIS.
	Whenever a process on a client needs information that would
	normally be found in these files locally, it makes a query to
	the NIS server that it is bound to
	instead.
29.4.3. Planning Considerations
This section describes a sample NIS
	environment which consists of 15 FreeBSD machines with no
	centralized point of administration. Each machine has its own
	/etc/passwd and
	/etc/master.passwd. These files are kept
	in sync with each other only through manual intervention.
	Currently, when a user is added to the lab, the process must
	be repeated on all 15 machines.
The configuration of the lab will be as follows:
	Machine name	IP address	Machine role
	ellington	10.0.0.2	NIS master
	coltrane	10.0.0.3	NIS slave
	basie	10.0.0.4	Faculty workstation
	bird	10.0.0.5	Client machine
	cli[1-11]	
		10.0.0.[6-17]	Other client machines

If this is the first time an NIS
	scheme is being developed, it should be thoroughly planned
	ahead of time. Regardless of network size, several decisions
	need to be made as part of the planning process.
29.4.3.1. Choosing a NIS Domain Name
When a client broadcasts its requests for info, it
	 includes the name of the NIS domain that
	 it is part of. This is how multiple servers on one network
	 can tell which server should answer which request. Think of
	 the NIS domain name as the name for a
	 group of hosts.
Some organizations choose to use their Internet domain
	 name for their NIS domain name. This is
	 not recommended as it can cause confusion when trying to
	 debug network problems. The NIS domain
	 name should be unique within the network and it is helpful
	 if it describes the group of machines it represents. For
	 example, the Art department at Acme Inc. might be in the
	 “acme-art” NIS domain. This
	 example will use the domain name
	 test-domain.
However, some non-FreeBSD operating systems require the
	 NIS domain name to be the same as the
	 Internet domain name. If one or more machines on the
	 network have this restriction, the Internet domain name
	 must be used as the
	 NIS domain name.
29.4.3.2. Physical Server Requirements
There are several things to keep in mind when choosing a
	 machine to use as a NIS server. Since
	 NIS clients depend upon the availability
	 of the server, choose a machine that is not rebooted
	 frequently. The NIS server should
	 ideally be a stand alone machine whose sole purpose is to be
	 an NIS server. If the network is not
	 heavily used, it is acceptable to put the
	 NIS server on a machine running other
	 services. However, if the NIS server
	 becomes unavailable, it will adversely affect all
	 NIS clients.
29.4.4. Configuring the NIS Master
	Server
The canonical copies of all NIS files
	are stored on the master server. The databases used to store
	the information are called NIS maps. In
	FreeBSD, these maps are stored in
	/var/yp/[domainname] where
	[domainname] is the name of the
	NIS domain. Since multiple domains are
	supported, it is possible to have several directories, one for
	each domain. Each domain will have its own independent set of
	maps.
NIS master and slave servers handle all
	NIS requests through ypserv(8). This
	daemon is responsible for receiving incoming requests from
	NIS clients, translating the requested
	domain and map name to a path to the corresponding database
	file, and transmitting data from the database back to the
	client.
Setting up a master NIS server can be
	relatively straight forward, depending on environmental needs.
	Since FreeBSD provides built-in NIS support,
	it only needs to be enabled by adding the following lines to
	/etc/rc.conf:
nisdomainname="test-domain"	[image: 1]
nis_server_enable="YES"		[image: 2]
nis_yppasswdd_enable="YES"	[image: 3]
	[image: 1]
	This line sets the NIS domain name
	 to test-domain.

	[image: 2]
	This automates the start up of the
	 NIS server processes when the system
	 boots.

	[image: 3]
	This enables the rpc.yppasswdd(8) daemon so that
	 users can change their NIS password
	 from a client machine.

Care must be taken in a multi-server domain where the
	server machines are also NIS clients. It
	is generally a good idea to force the servers to bind to
	themselves rather than allowing them to broadcast bind
	requests and possibly become bound to each other. Strange
	failure modes can result if one server goes down and others
	are dependent upon it. Eventually, all the clients will time
	out and attempt to bind to other servers, but the delay
	involved can be considerable and the failure mode is still
	present since the servers might bind to each other all over
	again.
A server that is also a client can be forced to bind to a
	particular server by adding these additional lines to
	/etc/rc.conf:
nis_client_enable="YES"				[image: 1]
nis_client_flags="-S test-domain,server"	[image: 2]
	[image: 1]
	This enables running client stuff as well.

	[image: 2]
	This line sets the NIS domain name
	 to test-domain and bind to itself.

After saving the edits, type
	/etc/netstart to restart the network and
	apply the values defined in /etc/rc.conf.
	Before initializing the NIS maps, start
	ypserv(8):
service ypserv start
29.4.4.1. Initializing the NIS Maps
NIS maps are generated from the
	 configuration files in /etc on the
	 NIS master, with one exception:
	 /etc/master.passwd. This is to prevent
	 the propagation of passwords to all the servers in the
	 NIS domain. Therefore, before the
	 NIS maps are initialized, configure the
	 primary password files:
cp /etc/master.passwd /var/yp/master.passwd
cd /var/yp
vi master.passwd
It is advisable to remove all entries for system
	 accounts as well as any user accounts that do not need to be
	 propagated to the NIS clients, such as
	 the root and any
	 other administrative accounts.
Note:
Ensure that the
	 /var/yp/master.passwd is neither
	 group or world readable by setting its permissions to
	 600.

After completing this task, initialize the
	 NIS maps. FreeBSD includes the
	 ypinit(8) script to do this. When generating maps
	 for the master server, include -m and
	 specify the NIS domain name:
ellington# ypinit -m test-domain
Server Type: MASTER Domain: test-domain
Creating an YP server will require that you answer a few questions.
Questions will all be asked at the beginning of the procedure.
Do you want this procedure to quit on non-fatal errors? [y/n: n] n
Ok, please remember to go back and redo manually whatever fails.
If not, something might not work.
At this point, we have to construct a list of this domains YP servers.
rod.darktech.org is already known as master server.
Please continue to add any slave servers, one per line. When you are
done with the list, type a <control D>.
master server : ellington
next host to add: coltrane
next host to add: ^D
The current list of NIS servers looks like this:
ellington
coltrane
Is this correct? [y/n: y] y

[..output from map generation..]

NIS Map update completed.
ellington has been setup as an YP master server without any errors.
This will create /var/yp/Makefile
	 from /var/yp/Makefile.dist. By
	 default, this file assumes that the environment has a
	 single NIS server with only FreeBSD clients.
	 Since test-domain has a slave server,
	 edit this line in /var/yp/Makefile so
	 that it begins with a comment
	 (#):
NOPUSH = "True"
29.4.4.2. Adding New Users
Every time a new user is created, the user account must
	 be added to the master NIS server and the
	 NIS maps rebuilt. Until this occurs, the
	 new user will not be able to login anywhere except on the
	 NIS master. For example, to add the new
	 user jsmith to the
	 test-domain domain, run these commands on
	 the master server:
pw useradd jsmith
cd /var/yp
make test-domain
The user could also be added using adduser
	 jsmith instead of pw useradd
	 smith.
29.4.5. Setting up a NIS Slave Server
To set up an NIS slave server, log on
	to the slave server and edit /etc/rc.conf
	as for the master server. Do not generate any
	NIS maps, as these already exist on the
	master server. When running ypinit on the
	slave server, use -s (for slave) instead of
	-m (for master). This option requires the
	name of the NIS master in addition to the
	domain name, as seen in this example:
coltrane# ypinit -s ellington test-domain

Server Type: SLAVE Domain: test-domain Master: ellington

Creating an YP server will require that you answer a few questions.
Questions will all be asked at the beginning of the procedure.

Do you want this procedure to quit on non-fatal errors? [y/n: n] n

Ok, please remember to go back and redo manually whatever fails.
If not, something might not work.
There will be no further questions. The remainder of the procedure
should take a few minutes, to copy the databases from ellington.
Transferring netgroup...
ypxfr: Exiting: Map successfully transferred
Transferring netgroup.byuser...
ypxfr: Exiting: Map successfully transferred
Transferring netgroup.byhost...
ypxfr: Exiting: Map successfully transferred
Transferring master.passwd.byuid...
ypxfr: Exiting: Map successfully transferred
Transferring passwd.byuid...
ypxfr: Exiting: Map successfully transferred
Transferring passwd.byname...
ypxfr: Exiting: Map successfully transferred
Transferring group.bygid...
ypxfr: Exiting: Map successfully transferred
Transferring group.byname...
ypxfr: Exiting: Map successfully transferred
Transferring services.byname...
ypxfr: Exiting: Map successfully transferred
Transferring rpc.bynumber...
ypxfr: Exiting: Map successfully transferred
Transferring rpc.byname...
ypxfr: Exiting: Map successfully transferred
Transferring protocols.byname...
ypxfr: Exiting: Map successfully transferred
Transferring master.passwd.byname...
ypxfr: Exiting: Map successfully transferred
Transferring networks.byname...
ypxfr: Exiting: Map successfully transferred
Transferring networks.byaddr...
ypxfr: Exiting: Map successfully transferred
Transferring netid.byname...
ypxfr: Exiting: Map successfully transferred
Transferring hosts.byaddr...
ypxfr: Exiting: Map successfully transferred
Transferring protocols.bynumber...
ypxfr: Exiting: Map successfully transferred
Transferring ypservers...
ypxfr: Exiting: Map successfully transferred
Transferring hosts.byname...
ypxfr: Exiting: Map successfully transferred

coltrane has been setup as an YP slave server without any errors.
Remember to update map ypservers on ellington.
This will generate a directory on the slave server called
	/var/yp/test-domain which contains copies
	of the NIS master server's maps. Adding
	these /etc/crontab entries on each slave
	server will force the slaves to sync their maps with the maps
	on the master server:
20 * * * * root /usr/libexec/ypxfr passwd.byname
21 * * * * root /usr/libexec/ypxfr passwd.byuid
These entries are not mandatory because the master server
	automatically attempts to push any map changes to its slaves.
	However, since clients may depend upon the slave server to
	provide correct password information, it is recommended to
	force frequent password map updates. This is especially
	important on busy networks where map updates might not always
	complete.
To finish the configuration, run
	/etc/netstart on the slave server in order
	to start the NIS services.
29.4.6. Setting Up an NIS Client
An NIS client binds to an
	NIS server using ypbind(8). This
	daemon broadcasts RPC requests on the local network. These
	requests specify the domain name configured on the client. If
	an NIS server in the same domain receives
	one of the broadcasts, it will respond to
	ypbind, which will record the
	server's address. If there are several servers available,
	the client will use the address of the first server to respond
	and will direct all of its NIS requests to
	that server. The client will automatically
	ping the server on a regular basis
	to make sure it is still available. If it fails to receive a
	reply within a reasonable amount of time,
	ypbind will mark the domain as
	unbound and begin broadcasting again in the hopes of locating
	another server.
To configure a FreeBSD machine to be an
	NIS client:
	Edit /etc/rc.conf and add the
	 following lines in order to set the
	 NIS domain name and start
	 ypbind(8) during network startup:
nisdomainname="test-domain"
nis_client_enable="YES"

	To import all possible password entries from the
	 NIS server, use
	 vipw to remove all user accounts
	 except one from /etc/master.passwd.
	 When removing the accounts, keep in mind that at least one
	 local account should remain and this account should be a
	 member of wheel. If there is a
	 problem with NIS, this local account
	 can be used to log in remotely, become the superuser, and
	 fix the problem. Before saving the edits, add the
	 following line to the end of the file:
+:::::::::
This line configures the client to provide anyone with
	 a valid account in the NIS server's
	 password maps an account on the client. There are many
	 ways to configure the NIS client by
	 modifying this line. One method is described in Section 29.4.8, “Using Netgroups”. For more detailed
	 reading, refer to the book
	 Managing NFS and NIS, published by
	 O'Reilly Media.

	To import all possible group entries from the
	 NIS server, add this line to
	 /etc/group:
+:*::

To start the NIS client immediately,
	execute the following commands as the superuser:
/etc/netstart
service ypbind start
After completing these steps, running
	ypcat passwd on the client should show
	the server's passwd map.
29.4.7. NIS Security
Since RPC is a broadcast-based service,
	any system running ypbind within
	the same domain can retrieve the contents of the
	NIS maps. To prevent unauthorized
	transactions, ypserv(8) supports a feature called
	“securenets” which can be used to restrict access
	to a given set of hosts. By default, this information is
	stored in /var/yp/securenets, unless
	ypserv(8) is started with -p and an
	alternate path. This file contains entries that consist of a
	network specification and a network mask separated by white
	space. Lines starting with # are
	considered to be comments. A sample
	securenets might look like this:
allow connections from local host -- mandatory
127.0.0.1 255.255.255.255
allow connections from any host
on the 192.168.128.0 network
192.168.128.0 255.255.255.0
allow connections from any host
between 10.0.0.0 to 10.0.15.255
this includes the machines in the testlab
10.0.0.0 255.255.240.0
If ypserv(8) receives a request from an address that
	matches one of these rules, it will process the request
	normally. If the address fails to match a rule, the request
	will be ignored and a warning message will be logged. If the
	securenets does not exist,
	ypserv will allow connections from any
	host.
Section 13.4, “TCP Wrapper” is an alternate mechanism
	for providing access control instead of
	securenets. While either access control
	mechanism adds some security, they are both vulnerable to
	“IP spoofing” attacks. All
	NIS-related traffic should be blocked at
	the firewall.
Servers using securenets
	may fail to serve legitimate NIS clients
	with archaic TCP/IP implementations. Some of these
	implementations set all host bits to zero when doing
	broadcasts or fail to observe the subnet mask when
	calculating the broadcast address. While some of these
	problems can be fixed by changing the client configuration,
	other problems may force the retirement of these client
	systems or the abandonment of
	securenets.
The use of TCP Wrapper
	increases the latency of the NIS server.
	The additional delay may be long enough to cause timeouts in
	client programs, especially in busy networks with slow
	NIS servers. If one or more clients suffer
	from latency, convert those clients into
	NIS slave servers and force them to bind to
	themselves.
29.4.7.1. Barring Some Users
In this example, the basie
	 system is a faculty workstation within the
	 NIS domain. The
	 passwd map on the master
	 NIS server contains accounts for both
	 faculty and students. This section demonstrates how to
	 allow faculty logins on this system while refusing student
	 logins.
To prevent specified users from logging on to a system,
	 even if they are present in the NIS
	 database, use vipw to add
	 -username with
	 the correct number of colons towards the end of
	 /etc/master.passwd on the client,
	 where username is the username of
	 a user to bar from logging in. The line with the blocked
	 user must be before the + line that
	 allows NIS users. In this example,
	 bill is barred
	 from logging on to basie:
basie# cat /etc/master.passwd
root:[password]:0:0::0:0:The super-user:/root:/bin/csh
toor:[password]:0:0::0:0:The other super-user:/root:/bin/sh
daemon:*:1:1::0:0:Owner of many system processes:/root:/usr/sbin/nologin
operator:*:2:5::0:0:System &:/:/usr/sbin/nologin
bin:*:3:7::0:0:Binaries Commands and Source,,,:/:/usr/sbin/nologin
tty:*:4:65533::0:0:Tty Sandbox:/:/usr/sbin/nologin
kmem:*:5:65533::0:0:KMem Sandbox:/:/usr/sbin/nologin
games:*:7:13::0:0:Games pseudo-user:/usr/games:/usr/sbin/nologin
news:*:8:8::0:0:News Subsystem:/:/usr/sbin/nologin
man:*:9:9::0:0:Mister Man Pages:/usr/share/man:/usr/sbin/nologin
bind:*:53:53::0:0:Bind Sandbox:/:/usr/sbin/nologin
uucp:*:66:66::0:0:UUCP pseudo-user:/var/spool/uucppublic:/usr/libexec/uucp/uucico
xten:*:67:67::0:0:X-10 daemon:/usr/local/xten:/usr/sbin/nologin
pop:*:68:6::0:0:Post Office Owner:/nonexistent:/usr/sbin/nologin
nobody:*:65534:65534::0:0:Unprivileged user:/nonexistent:/usr/sbin/nologin
-bill:::::::::
+:::::::::

basie#
29.4.8. Using Netgroups
Barring specified users from logging on to individual
	systems becomes unscaleable on larger networks and quickly
	loses the main benefit of NIS:
	centralized administration.
Netgroups were developed to handle large, complex networks
	with hundreds of users and machines. Their use is comparable
	to UNIX® groups, where the main difference is the lack of a
	numeric ID and the ability to define a netgroup by including
	both user accounts and other netgroups.
To expand on the example used in this chapter, the
	NIS domain will be extended to add the
	users and systems shown in Tables 28.2 and 28.3:
Table 29.2. Additional Users
	User Name(s)	Description
	alpha,
		beta	IT department employees
	charlie, delta	IT department apprentices
	echo,
		foxtrott,
		golf,
		...	employees
	able,
		baker,
		...	interns

Table 29.3. Additional Systems
	Machine Name(s)	Description
	war,
		death,
		famine,
		pollution	Only IT employees are allowed to log onto these
		servers.
	pride,
		greed,
		envy,
		wrath,
		lust,
		sloth	All members of the IT department are allowed to
		login onto these servers.
	one,
		two,
		three,
		four,
		...	Ordinary workstations used by
		employees.
	trashcan	A very old machine without any critical data.
		Even interns are allowed to use this system.

When using netgroups to configure this scenario, each user
	is assigned to one or more netgroups and logins are then
	allowed or forbidden for all members of the netgroup. When
	adding a new machine, login restrictions must be defined for
	all netgroups. When a new user is added, the account must be
	added to one or more netgroups. If the
	NIS setup is planned carefully, only one
	central configuration file needs modification to grant or deny
	access to machines.
The first step is the initialization of the
	NIS netgroup map. In
	FreeBSD, this map is not created by default. On the
	NIS master server, use an editor to create
	a map named /var/yp/netgroup.
This example creates four netgroups to represent IT
	employees, IT apprentices, employees, and interns:
IT_EMP (,alpha,test-domain) (,beta,test-domain)
IT_APP (,charlie,test-domain) (,delta,test-domain)
USERS (,echo,test-domain) (,foxtrott,test-domain) \
 (,golf,test-domain)
INTERNS (,able,test-domain) (,baker,test-domain)
Each entry configures a netgroup. The first column in an
	entry is the name of the netgroup. Each set of brackets
	represents either a group of one or more users or the name of
	another netgroup. When specifying a user, the three
	comma-delimited fields inside each group represent:
	The name of the host(s) where the other fields
	 representing the user are valid. If a hostname is not
	 specified, the entry is valid on all hosts.

	The name of the account that belongs to this
	 netgroup.

	The NIS domain for the account.
	 Accounts may be imported from other NIS
	 domains into a netgroup.

If a group contains multiple users, separate each user
	with whitespace. Additionally, each field may contain
	wildcards. See netgroup(5) for details.
Netgroup names longer than 8 characters should not be
	used. The names are case sensitive and using capital letters
	for netgroup names is an easy way to distinguish between user,
	machine and netgroup names.
Some non-FreeBSD NIS clients cannot
	handle netgroups containing more than 15 entries. This
	limit may be circumvented by creating several sub-netgroups
	with 15 users or fewer and a real netgroup consisting of the
	sub-netgroups, as seen in this example:
BIGGRP1 (,joe1,domain) (,joe2,domain) (,joe3,domain) [...]
BIGGRP2 (,joe16,domain) (,joe17,domain) [...]
BIGGRP3 (,joe31,domain) (,joe32,domain)
BIGGROUP BIGGRP1 BIGGRP2 BIGGRP3
Repeat this process if more than 225 (15 times 15) users
	exist within a single netgroup.
To activate and distribute the new
	NIS map:
ellington# cd /var/yp
ellington# make
This will generate the three NIS maps
	netgroup,
	netgroup.byhost and
	netgroup.byuser. Use the map key option
	of ypcat(1) to check if the new NIS
	maps are available:
ellington% ypcat -k netgroup
ellington% ypcat -k netgroup.byhost
ellington% ypcat -k netgroup.byuser
The output of the first command should resemble the
	contents of /var/yp/netgroup. The second
	command only produces output if host-specific netgroups were
	created. The third command is used to get the list of
	netgroups for a user.
To configure a client, use vipw(8) to specify the
	name of the netgroup. For example, on the server named
	war, replace this line:
+:::::::::
with
+@IT_EMP:::::::::
This specifies that only the users defined in the netgroup
	IT_EMP will be imported into this system's
	password database and only those users are allowed to login to
	this system.
This configuration also applies to the
	~ function of the shell and all routines
	which convert between user names and numerical user IDs. In
	other words,
	cd ~user will
	not work, ls -l will show the numerical ID
	instead of the username, and find . -user joe
	 -print will fail with the message
	No such user. To fix this, import all
	user entries without allowing them to login into the servers.
	This can be achieved by adding an extra line:
+:::::::::/usr/sbin/nologin
This line configures the client to import all entries but
	to replace the shell in those entries with
	/usr/sbin/nologin.
Make sure that extra line is placed
	after
	+@IT_EMP:::::::::. Otherwise, all user
	accounts imported from NIS will have
	/usr/sbin/nologin as their login
	shell and no one will be able to login to the system.
To configure the less important servers, replace the old
	+::::::::: on the servers with these
	lines:
+@IT_EMP:::::::::
+@IT_APP:::::::::
+:::::::::/usr/sbin/nologin
The corresponding lines for the workstations
	would be:
+@IT_EMP:::::::::
+@USERS:::::::::
+:::::::::/usr/sbin/nologin
NIS supports the creation of netgroups from other
	netgroups which can be useful if the policy regarding user
	access changes. One possibility is the creation of role-based
	netgroups. For example, one might create a netgroup called
	BIGSRV to define the login restrictions for
	the important servers, another netgroup called
	SMALLSRV for the less important servers,
	and a third netgroup called USERBOX for the
	workstations. Each of these netgroups contains the netgroups
	that are allowed to login onto these machines. The new
	entries for the NIS
	netgroup map would look like this:
BIGSRV IT_EMP IT_APP
SMALLSRV IT_EMP IT_APP ITINTERN
USERBOX IT_EMP ITINTERN USERS
This method of defining login restrictions works
	reasonably well when it is possible to define groups of
	machines with identical restrictions. Unfortunately, this is
	the exception and not the rule. Most of the time, the ability
	to define login restrictions on a per-machine basis is
	required.
Machine-specific netgroup definitions are another
	possibility to deal with the policy changes. In this
	scenario, the /etc/master.passwd of each
	system contains two lines starting with “+”.
	The first line adds a netgroup with the accounts allowed to
	login onto this machine and the second line adds all other
	accounts with /usr/sbin/nologin as shell.
	It is recommended to use the “ALL-CAPS” version
	of the hostname as the name of the netgroup:
+@BOXNAME:::::::::
+:::::::::/usr/sbin/nologin
Once this task is completed on all the machines, there is
	no longer a need to modify the local versions of
	/etc/master.passwd ever again. All
	further changes can be handled by modifying the
	NIS map. Here is an example of a possible
	netgroup map for this scenario:
Define groups of users first
IT_EMP (,alpha,test-domain) (,beta,test-domain)
IT_APP (,charlie,test-domain) (,delta,test-domain)
DEPT1 (,echo,test-domain) (,foxtrott,test-domain)
DEPT2 (,golf,test-domain) (,hotel,test-domain)
DEPT3 (,india,test-domain) (,juliet,test-domain)
ITINTERN (,kilo,test-domain) (,lima,test-domain)
D_INTERNS (,able,test-domain) (,baker,test-domain)
#
Now, define some groups based on roles
USERS DEPT1 DEPT2 DEPT3
BIGSRV IT_EMP IT_APP
SMALLSRV IT_EMP IT_APP ITINTERN
USERBOX IT_EMP ITINTERN USERS
#
And a groups for a special tasks
Allow echo and golf to access our anti-virus-machine
SECURITY IT_EMP (,echo,test-domain) (,golf,test-domain)
#
machine-based netgroups
Our main servers
WAR BIGSRV
FAMINE BIGSRV
User india needs access to this server
POLLUTION BIGSRV (,india,test-domain)
#
This one is really important and needs more access restrictions
DEATH IT_EMP
#
The anti-virus-machine mentioned above
ONE SECURITY
#
Restrict a machine to a single user
TWO (,hotel,test-domain)
[...more groups to follow]
It may not always be advisable
	to use machine-based netgroups. When deploying a couple of
	dozen or hundreds of systems,
	role-based netgroups instead of machine-based netgroups may be
	used to keep the size of the NIS map within
	reasonable limits.
29.4.9. Password Formats
NIS requires that all hosts within an
	NIS domain use the same format for
	encrypting passwords. If users have trouble authenticating on
	an NIS client, it may be due to a differing
	password format. In a heterogeneous network, the format must
	be supported by all operating systems, where
	DES is the lowest common standard.
To check which format a server or client is using, look
	at this section of
	/etc/login.conf:
default:\
	:passwd_format=des:\
	:copyright=/etc/COPYRIGHT:\
	[Further entries elided]
In this example, the system is using the
	DES format. Other possible values are
	blf for Blowfish and md5
	for MD5 encrypted passwords.
If the format on a host needs to be edited to match the
	one being used in the NIS domain, the
	login capability database must be rebuilt after saving the
	change:
cap_mkdb /etc/login.conf
Note:
The format of passwords for existing user accounts will
	 not be updated until each user changes their password
	 after the login capability database is
	 rebuilt.

24.3. Enabling DTrace Support
In FreeBSD 9.2 and 10.0, DTrace support is built into the
 GENERIC kernel. Users of earlier versions
 of FreeBSD or who prefer to statically compile in DTrace support
 should add the following lines to a custom kernel configuration
 file and recompile the kernel using the instructions in Chapter 8, Configuring the FreeBSD Kernel:
options KDTRACE_HOOKS
options DDB_CTF
makeoptions	DEBUG=-g
makeoptions	WITH_CTF=1
Users of the AMD64 architecture should also add this
 line:
options KDTRACE_FRAME
This option provides support for FBT.
 While DTrace will work without this option, there will be
 limited support for function boundary tracing.
Once the FreeBSD system has rebooted into the new kernel, or
 the DTrace kernel modules have been loaded using
 kldload dtraceall, the system will need
 support for the Korn shell as the DTrace
 Toolkit has several utilities written in ksh.
 Make sure that the shells/ksh93 package or
 port is installed. It is also possible to run these tools under
 shells/pdksh or
 shells/mksh.
Finally, install the current DTrace Toolkit,
 a collection of ready-made scripts
 for collecting system information. There are scripts to check
 open files, memory, CPU usage, and a lot
 more. FreeBSD 10
 installs a few of these scripts into
 /usr/share/dtrace. On other FreeBSD versions,
 or to install the full
 DTrace Toolkit, use the
 sysutils/DTraceToolkit package or
 port.
Note:
The scripts found in
	/usr/share/dtrace have been specifically
	ported to FreeBSD. Not all of the scripts found in the DTrace
	Toolkit will work as-is on FreeBSD and some scripts may require
	some effort in order for them to work on FreeBSD.

The DTrace Toolkit includes many scripts in the special
 language of DTrace. This language is called the D language
 and it is very similar to C++. An in depth discussion of the
 language is beyond the scope of this document. It is
 covered extensively in the Illumos Dynamic
	Tracing Guide.
18.8. UFS Journaling Through GEOM
Support for journals on
 UFS file systems is available on FreeBSD. The
 implementation is provided through the GEOM
 subsystem and is configured using gjournal.
 Unlike other file system journaling implementations, the
 gjournal method is block based and not
 implemented as part of the file system. It is a
 GEOM extension.
Journaling stores a log of file system transactions, such as
 changes that make up a complete disk write operation, before
 meta-data and file writes are committed to the disk. This
 transaction log can later be replayed to redo file system
 transactions, preventing file system inconsistencies.
This method provides another mechanism to protect against
 data loss and inconsistencies of the file system. Unlike Soft
 Updates, which tracks and enforces meta-data updates, and
 snapshots, which create an image of the file system, a log is
 stored in disk space specifically for this task. For better
 performance, the journal may be stored on another disk. In this
 configuration, the journal provider or storage device should be
 listed after the device to enable journaling on.
The GENERIC kernel provides support for
 gjournal. To automatically load the
 geom_journal.ko kernel module at boot time,
 add the following line to
 /boot/loader.conf:
geom_journal_load="YES"
If a custom kernel is used, ensure the following line is in
 the kernel configuration file:
options	GEOM_JOURNAL
Once the module is loaded, a journal can be created on a new
 file system using the following steps. In this example,
 da4 is a new SCSI
 disk:
gjournal load
gjournal label /dev/da4
This will load the module and create a
 /dev/da4.journal device node on
 /dev/da4.
A UFS file system may now be created on
 the journaled device, then mounted on an existing mount
 point:
newfs -O 2 -J /dev/da4.journal
mount /dev/da4.journal /mnt
Note:
In the case of several slices, a journal will be created
	for each individual slice. For instance, if
	ad4s1 and ad4s2 are
	both slices, then gjournal will create
	ad4s1.journal and
	ad4s2.journal.

Journaling may also be enabled on current file systems by
 using tunefs. However,
 always make a backup before attempting to
 alter an existing file system. In most cases,
 gjournal will fail if it is unable to create
 the journal, but this does not protect against data loss
 incurred as a result of misusing tunefs.
 Refer to gjournal(8) and tunefs(8) for more
 information about these commands.
It is possible to journal the boot disk of a FreeBSD system.
 Refer to the article Implementing UFS
	Journaling on a Desktop PC for detailed
 instructions.
24.2. Implementation Differences
While the DTrace in FreeBSD is similar to that found in
 Solaris™, differences do exist. The primary difference is that
 in FreeBSD, DTrace is implemented as a set of kernel modules and
 DTrace can not be used until the modules are loaded. To load
 all of the necessary modules:
kldload dtraceall
Beginning with FreeBSD 10.0-RELEASE, the modules are
 automatically loaded when dtrace is
 run.
FreeBSD uses the DDB_CTF kernel option to
 enable support for loading CTF data from
 kernel modules and the kernel itself. CTF is
 the Solaris™ Compact C Type Format which encapsulates a reduced
 form of debugging information similar to
 DWARF and the venerable stabs.
 CTF data is added to binaries by the
 ctfconvert and ctfmerge
 build tools. The ctfconvert utility parses
 DWARF ELF debug sections
 created by the compiler and ctfmerge merges
 CTF ELF sections from
 objects into either executables or shared libraries.
Some different providers exist for FreeBSD than for Solaris™.
 Most notable is the dtmalloc provider, which
 allows tracing malloc() by type in the FreeBSD
 kernel. Some of the providers found in Solaris™, such as
 cpc and mib, are not
 present in FreeBSD. These may appear in future versions of FreeBSD.
 Moreover, some of the providers available in both operating
 systems are not compatible, in the sense that their probes have
 different argument types. Thus, D scripts
 written on Solaris™ may or may not work unmodified on FreeBSD, and
 vice versa.
Due to security differences, only root may use DTrace on FreeBSD.
 Solaris™ has a few low level security checks which do not yet
 exist in FreeBSD. As such, the
 /dev/dtrace/dtrace is strictly limited to
 root.
DTrace falls under the Common Development and Distribution
 License (CDDL) license. To view this license
 on FreeBSD, see
 /usr/src/cddl/contrib/opensolaris/OPENSOLARIS.LICENSE
 or view it online at http://opensource.org/licenses/CDDL-1.0.
 While a FreeBSD kernel with DTrace support is
 BSD licensed, the CDDL is
 used when the modules are distributed in binary form or the
 binaries are loaded.
14.5. Updating Multiple Jails
Contributed by Daniel Gerzo. Based upon an idea presented by Simon L. B. Nielsen. And an article written by Ken Tom. The management of multiple jails can become problematic
 because every jail has to be rebuilt from scratch whenever it is
 upgraded. This can be time consuming and tedious if a lot of
 jails are created and manually updated.
This section demonstrates one method to resolve this issue
 by safely sharing as much as is possible between jails using
 read-only mount_nullfs(8) mounts, so that updating is
 simpler. This makes it more attractive to put single services,
 such as HTTP, DNS, and
 SMTP, into individual jails. Additionally,
 it provides a simple way to add, remove, and upgrade
 jails.
Note:
Simpler solutions exist, such as
	ezjail, which provides an easier
	method of administering FreeBSD jails but is less versatile than
	this setup. ezjail is covered in
	more detail in Section 14.6, “Managing Jails with
	ezjail”.

The goals of the setup described in this section are:
	Create a simple and easy to understand jail structure
	 that does not require running a full installworld on each
	 and every jail.

	Make it easy to add new jails or remove existing
	 ones.

	Make it easy to update or upgrade existing jails.

	Make it possible to run a customized FreeBSD branch.

	Be paranoid about security, reducing as much as
	 possible the possibility of compromise.

	Save space and inodes, as much as possible.

This design relies on a single, read-only master template
 which is mounted into each jail and one read-write device per
 jail. A device can be a separate physical disc, a partition, or
 a vnode backed memory device. This example uses read-write
 nullfs mounts.
The file system layout is as follows:
	The jails are based under the
	 /home partition.

	Each jail will be mounted under the
	 /home/j directory.

	The template for each jail and the read-only partition
	 for all of the jails is
	 /home/j/mroot.

	A blank directory will be created for each jail under
	 the /home/j directory.

	Each jail will have a /s directory
	 that will be linked to the read-write portion of the
	 system.

	Each jail will have its own read-write system that is
	 based upon /home/j/skel.

	The read-write portion of each jail will be created in
	 /home/js.

14.5.1. Creating the Template
This section describes the steps needed to create the
	master template.
It is recommended to first update the host FreeBSD system to
	the latest -RELEASE branch using the instructions in Section 23.5, “Updating FreeBSD from Source”. Additionally, this template uses the
	sysutils/cpdup package or port and
	portsnap will be used to download
	the FreeBSD Ports Collection.
	First, create a directory structure for the read-only
	 file system which will contain the FreeBSD binaries for the
	 jails. Then, change directory to the FreeBSD source tree and
	 install the read-only file system to the jail
	 template:
mkdir /home/j /home/j/mroot
cd /usr/src
make installworld DESTDIR=/home/j/mroot

	Next, prepare a FreeBSD Ports Collection for the jails as
	 well as a FreeBSD source tree, which is required for
	 mergemaster:
cd /home/j/mroot
mkdir usr/ports
portsnap -p /home/j/mroot/usr/ports fetch extract
cpdup /usr/src /home/j/mroot/usr/src

	Create a skeleton for the read-write portion of the
	 system:
mkdir /home/j/skel /home/j/skel/home /home/j/skel/usr-X11R6 /home/j/skel/distfiles
mv etc /home/j/skel
mv usr/local /home/j/skel/usr-local
mv tmp /home/j/skel
mv var /home/j/skel
mv root /home/j/skel

	Use mergemaster to install
	 missing configuration files. Then, remove the extra
	 directories that mergemaster
	 creates:
mergemaster -t /home/j/skel/var/tmp/temproot -D /home/j/skel -i
cd /home/j/skel
rm -R bin boot lib libexec mnt proc rescue sbin sys usr dev

	Now, symlink the read-write file system to the
	 read-only file system. Ensure that the symlinks are
	 created in the correct s/ locations
	 as the creation of directories in the wrong locations will
	 cause the installation to fail.
cd /home/j/mroot
mkdir s
ln -s s/etc etc
ln -s s/home home
ln -s s/root root
ln -s ../s/usr-local usr/local
ln -s ../s/usr-X11R6 usr/X11R6
ln -s ../../s/distfiles usr/ports/distfiles
ln -s s/tmp tmp
ln -s s/var var

	As a last step, create a generic
	 /home/j/skel/etc/make.conf containing
	 this line:
WRKDIRPREFIX?= /s/portbuild
This makes it possible to compile FreeBSD ports inside
	 each jail. Remember that the ports directory is part of
	 the read-only system. The custom path for
	 WRKDIRPREFIX allows builds to be done
	 in the read-write portion of every jail.

14.5.2. Creating Jails
The jail template can now be used to setup and configure
	the jails in /etc/rc.conf. This example
	demonstrates the creation of 3 jails: NS,
	MAIL and WWW.
	Add the following lines to
	 /etc/fstab, so that the read-only
	 template for the jails and the read-write space will be
	 available in the respective jails:
/home/j/mroot /home/j/ns nullfs ro 0 0
/home/j/mroot /home/j/mail nullfs ro 0 0
/home/j/mroot /home/j/www nullfs ro 0 0
/home/js/ns /home/j/ns/s nullfs rw 0 0
/home/js/mail /home/j/mail/s nullfs rw 0 0
/home/js/www /home/j/www/s nullfs rw 0 0
To prevent
	 fsck from checking
	 nullfs mounts during boot and
	 dump from backing up the
	 read-only nullfs mounts of the jails, the last two
	 columns are both set to 0.

	Configure the jails in
	 /etc/rc.conf:
jail_enable="YES"
jail_set_hostname_allow="NO"
jail_list="ns mail www"
jail_ns_hostname="ns.example.org"
jail_ns_ip="192.168.3.17"
jail_ns_rootdir="/usr/home/j/ns"
jail_ns_devfs_enable="YES"
jail_mail_hostname="mail.example.org"
jail_mail_ip="192.168.3.18"
jail_mail_rootdir="/usr/home/j/mail"
jail_mail_devfs_enable="YES"
jail_www_hostname="www.example.org"
jail_www_ip="62.123.43.14"
jail_www_rootdir="/usr/home/j/www"
jail_www_devfs_enable="YES"
The
	 jail_name_rootdir
	 variable is set to
	 /usr/home instead
	 of /home because
	 the physical path of /home on a default FreeBSD
	 installation is /usr/home. The
	 jail_name_rootdir
	 variable must not be set to a path
	 which includes a symbolic link, otherwise the jails will
	 refuse to start.

	Create the required mount points for the read-only
	 file system of each jail:
mkdir /home/j/ns /home/j/mail /home/j/www

	Install the read-write template into each jail using
	 sysutils/cpdup:
mkdir /home/js
cpdup /home/j/skel /home/js/ns
cpdup /home/j/skel /home/js/mail
cpdup /home/j/skel /home/js/www

	In this phase, the jails are built and prepared to
	 run. First, mount the required file systems for each
	 jail, and then start them:
mount -a
service jail start

The jails should be running now. To check if they have
	started correctly, use jls. Its output
	should be similar to the following:
jls
 JID IP Address Hostname Path
 3 192.168.3.17 ns.example.org /home/j/ns
 2 192.168.3.18 mail.example.org /home/j/mail
 1 62.123.43.14 www.example.org /home/j/www
At this point, it should be possible to log onto each
	jail, add new users, or configure daemons. The
	JID column indicates the jail
	identification number of each running jail. Use the following
	command to perform administrative tasks in the jail whose
	JID is 3:
jexec 3 tcsh
14.5.3. Upgrading
The design of this setup provides an easy way to upgrade
	existing jails while minimizing their downtime. Also, it
	provides a way to roll back to the older version should a
	problem occur.
	The first step is to upgrade the host system. Then,
	 create a new temporary read-only template in
	 /home/j/mroot2.
mkdir /home/j/mroot2
cd /usr/src
make installworld DESTDIR=/home/j/mroot2
cd /home/j/mroot2
cpdup /usr/src usr/src
mkdir s
The installworld creates a
	 few unnecessary directories, which should be
	 removed:
chflags -R 0 var
rm -R etc var root usr/local tmp

	Recreate the read-write symlinks for the master file
	 system:
ln -s s/etc etc
ln -s s/root root
ln -s s/home home
ln -s ../s/usr-local usr/local
ln -s ../s/usr-X11R6 usr/X11R6
ln -s s/tmp tmp
ln -s s/var var

	Next, stop the jails:
service jail stop

	Unmount the original file systems as the read-write
	 systems are attached to the read-only system
	 (/s):
umount /home/j/ns/s
umount /home/j/ns
umount /home/j/mail/s
umount /home/j/mail
umount /home/j/www/s
umount /home/j/www

	Move the old read-only file system and replace it with
	 the new one. This will serve as a backup and archive of
	 the old read-only file system should something go wrong.
	 The naming convention used here corresponds to when a new
	 read-only file system has been created. Move the original
	 FreeBSD Ports Collection over to the new file system to save
	 some space and inodes:
cd /home/j
mv mroot mroot.20060601
mv mroot2 mroot
mv mroot.20060601/usr/ports mroot/usr

	At this point the new read-only template is ready, so
	 the only remaining task is to remount the file systems and
	 start the jails:
mount -a
service jail start

Use jls to check if the jails started
	correctly. Run mergemaster in each jail to
	update the configuration files.
23.4. Tracking a Development Branch
FreeBSD has two development branches: FreeBSD-CURRENT and
 FreeBSD-STABLE.
This section provides an explanation of each branch and its
 intended audience, as well as how to keep a system up-to-date
 with each respective branch.
23.4.1. Using FreeBSD-CURRENT
FreeBSD-CURRENT is the “bleeding edge” of FreeBSD
	development and FreeBSD-CURRENT users are expected to have a
	high degree of technical skill. Less technical users who wish
	to track a development branch should track FreeBSD-STABLE
	instead.
FreeBSD-CURRENT is the very latest source code for FreeBSD and
	includes works in progress, experimental changes, and
	transitional mechanisms that might or might not be present in
	the next official release. While many FreeBSD developers compile
	the FreeBSD-CURRENT source code daily, there are short periods of
	time when the source may not be buildable. These problems are
	resolved as quickly as possible, but whether or not
	FreeBSD-CURRENT brings disaster or new functionality can be a
	matter of when the source code was synced.
FreeBSD-CURRENT is made available for three primary interest
	groups:
	Members of the FreeBSD community who are actively
	 working on some part of the source tree.

	Members of the FreeBSD community who are active testers.
	 They are willing to spend time solving problems, making
	 topical suggestions on changes and the general direction
	 of FreeBSD, and submitting patches.

	Users who wish to keep an eye on things, use the
	 current source for reference purposes, or make the
	 occasional comment or code contribution.

FreeBSD-CURRENT should not be
	considered a fast-track to getting new features before the
	next release as pre-release features are not yet fully tested
	and most likely contain bugs. It is not a quick way of
	getting bug fixes as any given commit is just as likely to
	introduce new bugs as to fix existing ones. FreeBSD-CURRENT is
	not in any way “officially supported”.
To track FreeBSD-CURRENT:
	Join the freebsd-current and the
	 svn-src-head lists. This is
	 essential in order to see the
	 comments that people are making about the current state
	 of the system and to receive important bulletins about
	 the current state of FreeBSD-CURRENT.
The svn-src-head list records the commit log
	 entry for each change as it is made, along with any
	 pertinent information on possible side effects.
To join these lists, go to http://lists.FreeBSD.org/mailman/listinfo,
	 click on the list to subscribe to, and follow the
	 instructions. In order to track changes to the whole
	 source tree, not just the changes to FreeBSD-CURRENT,
	 subscribe to the svn-src-all list.

	Synchronize with the FreeBSD-CURRENT sources. Typically,
	 svnlite is used to check out the
	 -CURRENT code from the head branch of
	 one of the Subversion mirror sites listed in
	 Section A.3.6, “Subversion Mirror
	Sites”.

	Due to the size of the repository, some users choose
	 to only synchronize the sections of source that interest
	 them or which they are contributing patches to. However,
	 users that plan to compile the operating system from
	 source must download all of
	 FreeBSD-CURRENT, not just selected portions.
Before compiling FreeBSD-CURRENT
	 , read /usr/src/Makefile
	 very carefully and follow the instructions in
	 Section 23.5, “Updating FreeBSD from Source”.
	 Read the FreeBSD-CURRENT mailing list and
	 /usr/src/UPDATING to stay
	 up-to-date on other bootstrapping procedures that
	 sometimes become necessary on the road to the next
	 release.

	Be active! FreeBSD-CURRENT users are encouraged to
	 submit their suggestions for enhancements or bug fixes.
	 Suggestions with accompanying code are always
	 welcome.

23.4.2. Using FreeBSD-STABLE
FreeBSD-STABLE is the development branch from which major
	releases are made. Changes go into this branch at a slower
	pace and with the general assumption that they have first been
	tested in FreeBSD-CURRENT. This is still a
	development branch and, at any given time, the sources for
	FreeBSD-STABLE may or may not be suitable for general use. It is
	simply another engineering development track, not a resource
	for end-users. Users who do not have the resources to perform
	testing should instead run the most recent release of
	FreeBSD.
Those interested in tracking or contributing to the FreeBSD
	development process, especially as it relates to the next
	release of FreeBSD, should consider following FreeBSD-STABLE.
While the FreeBSD-STABLE branch should compile and run at all
	times, this cannot be guaranteed. Since more people run
	FreeBSD-STABLE than FreeBSD-CURRENT, it is inevitable that bugs and
	corner cases will sometimes be found in FreeBSD-STABLE that were
	not apparent in FreeBSD-CURRENT. For this reason, one should not
	blindly track FreeBSD-STABLE. It is particularly important
	not to update any production servers to
	FreeBSD-STABLE without thoroughly testing the code in a
	development or testing environment.
To track FreeBSD-STABLE:
	Join the freebsd-stable list in order to stay
	 informed of build dependencies that may appear in
	 FreeBSD-STABLE or any other issues requiring special
	 attention. Developers will also make announcements in
	 this mailing list when they are contemplating some
	 controversial fix or update, giving the users a chance to
	 respond if they have any issues to raise concerning the
	 proposed change.
Join the relevant svn list
	 for the branch being tracked. For example, users
	 tracking the 9-STABLE branch should join the
	 svn-src-stable-9 list. This list records the
	 commit log entry for each change as it is made, along
	 with any pertinent information on possible
	 side effects.
To join these lists, go to http://lists.FreeBSD.org/mailman/listinfo,
	 click on the list to subscribe to, and follow the
	 instructions. In order to track changes for the whole
	 source tree, subscribe to svn-src-all.

	To install a new FreeBSD-STABLE system, install the most
	 recent FreeBSD-STABLE release from the FreeBSD mirror sites or use a
	 monthly snapshot built from FreeBSD-STABLE. Refer to www.freebsd.org/snapshots
	 for more information about snapshots.
To compile or upgrade to an existing FreeBSD system to
	 FreeBSD-STABLE, use svn
	 to check out the source for the desired
	 branch. Branch names, such as
	 stable/9, are listed at www.freebsd.org/releng.

	Before compiling or upgrading to FreeBSD-STABLE
	 , read /usr/src/Makefile
	 carefully and follow the instructions in Section 23.5, “Updating FreeBSD from Source”. Read the FreeBSD-STABLE mailing list and
	 /usr/src/UPDATING to keep up-to-date
	 on other bootstrapping procedures that sometimes become
	 necessary on the road to the next release.

9.4. Direct Printing
For occasional printing, files can be sent directly to a
 printer device without any setup. For example, a file called
 sample.txt can be sent to a
 USB printer:
cp sample.txt /dev/unlpt0
Direct printing to network printers depends on the
 abilities of the printer, but most accept print jobs on port
 9100, and nc(1) can be used with them. To print the
 same file to a printer with the DNS
 hostname of netlaser:
nc netlaser 9100 < sample.txt
28.7. Setting Up to Send Only
Contributed by Bill Moran. There are many instances where one may only want to send
 mail through a relay. Some examples are:
	The computer is a desktop machine that needs to use
	 programs such as mail(1), using the
	 ISP's mail relay.

	The computer is a server that does not handle mail
	 locally, but needs to pass off all mail to a relay for
	 processing.

While any MTA is capable of filling
 this particular niche, it can be difficult to properly configure
 a full-featured MTA just to handle offloading
 mail. Programs such as Sendmail and
 Postfix are overkill for this
 use.
Additionally, a typical Internet access service agreement
 may forbid one from running a “mail server”.
The easiest way to fulfill those needs is to install the
 mail/ssmtp port:
cd /usr/ports/mail/ssmtp
make install replace clean
Once installed, mail/ssmtp can be
 configured with
 /usr/local/etc/ssmtp/ssmtp.conf:
root=yourrealemail@example.com
mailhub=mail.example.com
rewriteDomain=example.com
hostname=_HOSTNAME_
Use the real email address for root. Enter the
 ISP's outgoing mail relay in place of
 mail.example.com.
 Some ISPs call this the “outgoing mail
	server” or “SMTP server”.
Make sure to disable Sendmail,
 including the outgoing mail service. See Section 28.4.1, “Disable Sendmail” for details.
mail/ssmtp has some other options
 available. Refer to the examples in
 /usr/local/etc/ssmtp or the manual page
 of ssmtp for more information.
Setting up ssmtp in this manner
 allows any software on the computer that needs to send mail to
 function properly, while not violating the
 ISP's usage policy or allowing the computer
 to be hijacked for spamming.
2.2. Minimum Hardware Requirements
The hardware requirements to install FreeBSD vary by
 architecture. Hardware architectures and devices supported by a
 FreeBSD release are listed on the FreeBSD Release
 Information page. The FreeBSD download page
 also has recommendations for choosing the correct image for
 different architectures.
A FreeBSD installation requires a minimum of 96 MB of
 RAM and 1.5 GB of free hard drive space.
 However, such small amounts of memory and disk space are really
 only suitable for custom applications like embedded appliances.
 General-purpose desktop systems need more resources.
 2-4 GB RAM and at least 8 GB hard drive space is a
 good starting point.
These are the processor requirements for each
 architecture:
	amd64
	This is the most common desktop and laptop processor
	 type, used in most modern systems. Intel® calls it
	 Intel64. Other manufacturers sometimes
	 call it x86-64.
Examples of amd64 compatible processors
	 include: AMD Athlon™64, AMD Opteron™,
	 multi-core Intel® Xeon™, and
	 Intel® Core™ 2 and later processors.

	i386
	Older desktops and laptops often use this 32-bit, x86
	 architecture.
Almost all i386-compatible processors with a floating
	 point unit are supported. All Intel® processors 486 or
	 higher are supported.
FreeBSD will take advantage of Physical Address
	 Extensions (PAE) support on
	 CPUs with this feature. A kernel with
	 the PAE feature enabled will detect
	 memory above 4 GB and allow it to be used by the
	 system. However, using PAE places
	 constraints on device drivers and other features of
	 FreeBSD.

	powerpc
	All New World ROM Apple®
	 Mac® systems with built-in USB
	 are supported. SMP is supported on
	 machines with multiple CPUs.
A 32-bit kernel can only use the first 2 GB of
	 RAM.

	sparc64
	Systems supported by FreeBSD/sparc64 are listed at
	 the FreeBSD/sparc64
	 Project.
SMP is supported on all systems
	 with more than 1 processor. A dedicated disk is required
	 as it is not possible to share a disk with another
	 operating system at this time.

28.5. Troubleshooting
	28.5.1.
	Why do I have to use the FQDN for hosts on my
	 site?

		The host may actually be in a different domain. For
	 example, in order for a host in foo.bar.edu to reach a
	 host called mumble in the
	 bar.edu
	 domain, refer to it by the Fully-Qualified Domain Name
	 FQDN, mumble.bar.edu,
	 instead of just mumble.
This is because the version of
	 BIND which ships with FreeBSD
	 no longer provides default abbreviations for non-FQDNs
	 other than the local domain. An unqualified host such as
	 mumble must either be found as
	 mumble.foo.bar.edu, or
	 it will be searched for in the root domain.
In older versions of BIND,
	 the search continued across mumble.bar.edu, and
	 mumble.edu.
	 RFC 1535 details why this is considered bad practice or
	 even a security hole.
As a good workaround, place the line:
search foo.bar.edu bar.edu
instead of the previous:
domain foo.bar.edu
into /etc/resolv.conf. However,
	 make sure that the search order does not go beyond the
	 “boundary between local and public
	 administration”, as RFC 1535 calls it.

	28.5.2.
	How can I run a mail server on a dial-up PPP
	 host?

		Connect to a FreeBSD mail gateway on the LAN. The PPP
	 connection is non-dedicated.
One way to do this is to get a full-time Internet
	 server to provide secondary
	 MX
	
	 services for the domain. In this example, the domain is
	 example.com
	 and the ISP has configured
	 example.net
	 to provide secondary MX services to the
	 domain:
example.com. MX 10 example.com.
 MX 20 example.net.
Only one host should be specified as the final
	 recipient. For Sendmail, add
	 Cw example.com in
	 /etc/mail/sendmail.cf on example.com.
When the sending MTA attempts
	 to deliver mail, it will try to connect to the system,
	 example.com,
	 over the PPP link. This will time out if the destination
	 is offline. The MTA will automatically
	 deliver it to the secondary MX site at
	 the Internet Service Provider (ISP),
	 example.net.
	 The secondary MX site will periodically
	 try to connect to the primary MX host,
	 example.com.
Use something like this as a login script:
#!/bin/sh
Put me in /usr/local/bin/pppmyisp
(sleep 60 ; /usr/sbin/sendmail -q) &
/usr/sbin/ppp -direct pppmyisp
When creating a separate login script for users,
	 instead use sendmail -qRexample.com in
	 the script above. This will force all mail in the queue
	 for
	 example.com
	 to be processed immediately.
A further refinement of the situation can be seen from
	 this example from the FreeBSD Internet service provider's mailing list:
> we provide the secondary MX for a customer. The customer connects to
> our services several times a day automatically to get the mails to
> his primary MX (We do not call his site when a mail for his domains
> arrived). Our sendmail sends the mailqueue every 30 minutes. At the
> moment he has to stay 30 minutes online to be sure that all mail is
> gone to the primary MX.
>
> Is there a command that would initiate sendmail to send all the mails
> now? The user has not root-privileges on our machine of course.

In the “privacy flags” section of sendmail.cf, there is a
definition Opgoaway,restrictqrun

Remove restrictqrun to allow non-root users to start the queue processing.
You might also like to rearrange the MXs. We are the 1st MX for our
customers like this, and we have defined:

If we are the best MX for a host, try directly instead of generating
local config error.
OwTrue

That way a remote site will deliver straight to you, without trying
the customer connection. You then send to your customer. Only works for
“hosts”, so you need to get your customer to name their mail
machine “customer.com” as well as
“hostname.customer.com” in the DNS. Just put an A record in
the DNS for “customer.com”.

Chapter 30. Firewalls
Contributed by Joseph J. Barbish. Converted to SGML and updated by Brad Davis. 30.1. Synopsis
Firewalls make it possible to filter the incoming and
 outgoing traffic that flows through a system. A firewall can
 use one or more sets of “rules” to inspect network
 packets as they come in or go out of network connections and
 either allows the traffic through or blocks it. The rules of
 a firewall can inspect one or more characteristics of the
 packets such as the protocol type, source or destination host
 address, and source or destination port.
Firewalls can enhance the security of a host or a network.
 They can be used to do one or more of the following:
	Protect and insulate the applications, services, and
	 machines of an internal network from unwanted traffic from
	 the public Internet.

	Limit or disable access from hosts of the internal
	 network to services of the public Internet.

	Support network address translation
	 (NAT), which allows an internal network
	 to use private IP addresses and share a
	 single connection to the public Internet using either a
	 single IP address or a shared pool of
	 automatically assigned public addresses.

FreeBSD has three firewalls built into the base system:
 PF, IPFW,
 and IPFILTER, also known as
 IPF. FreeBSD also provides two traffic
 shapers for controlling bandwidth usage: altq(4) and
 dummynet(4). ALTQ has
 traditionally been closely tied with
 PF and
 dummynet with
 IPFW. Each firewall uses rules to
 control the access of packets to and from a FreeBSD system,
 although they go about it in different ways and each has a
 different rule syntax.
FreeBSD provides multiple firewalls in order to meet the
 different requirements and preferences for a wide variety of
 users. Each user should evaluate which firewall best meets
 their needs.
After reading this chapter, you will know:
	How to define packet filtering rules.

	The differences between the firewalls built into
	 FreeBSD.

	How to use and configure the
	 PF firewall.

	How to use and configure the
	 IPFW firewall.

	How to use and configure the
	 IPFILTER firewall.

Before reading this chapter, you should:
	Understand basic FreeBSD and Internet concepts.

Note:
Since all firewalls are based on inspecting the values of
	selected packet control fields, the creator of the firewall
	ruleset must have an understanding of how
	TCP/IP works, what the different values in
	the packet control fields are, and how these values are used
	in a normal session conversation. For a good introduction,
	refer to Daryl's
	 TCP/IP Primer.

14.4. Fine Tuning and Administration
There are several options which can be set for any jail, and
 various ways of combining a host FreeBSD system with jails, to
 produce higher level applications. This section
 presents:
	Some of the options available for tuning the behavior
	 and security restrictions implemented by a jail
	 installation.

	Some of the high-level applications for jail management,
	 which are available through the FreeBSD Ports Collection, and
	 can be used to implement overall jail-based
	 solutions.

14.4.1. System Tools for Jail Tuning in FreeBSD
Fine tuning of a jail's configuration is mostly done by
	setting sysctl(8) variables. A special subtree of sysctl
	exists as a basis for organizing all the relevant options: the
	security.jail.* hierarchy of FreeBSD kernel
	options. Here is a list of the main jail-related sysctls,
	complete with their default value. Names should be
	self-explanatory, but for more information about them, please
	refer to the jail(8) and sysctl(8) manual
	pages.
	security.jail.set_hostname_allowed:
	 1

	security.jail.socket_unixiproute_only:
	 1

	security.jail.sysvipc_allowed:
	 0

	security.jail.enforce_statfs:
	 2

	security.jail.allow_raw_sockets:
	 0

	security.jail.chflags_allowed:
	 0

	security.jail.jailed: 0

These variables can be used by the system administrator of
	the host system to add or remove some of
	the limitations imposed by default on the root user. Note that there
	are some limitations which cannot be removed. The
	root user is not
	allowed to mount or unmount file systems from within a
	jail(8). The root inside a jail may not
	load or unload devfs(8) rulesets, set firewall rules, or
	do many other administrative tasks which require modifications
	of in-kernel data, such as setting the
	securelevel of the kernel.
The base system of FreeBSD contains a basic set of tools for
	viewing information about the active jails, and attaching to a
	jail to run administrative commands. The jls(8) and
	jexec(8) commands are part of the base FreeBSD system, and
	can be used to perform the following simple tasks:
	Print a list of active jails and their corresponding
	 jail identifier (JID),
	 IP address, hostname and path.

	Attach to a running jail, from its host system, and
	 run a command inside the jail or perform administrative
	 tasks inside the jail itself. This is especially useful
	 when the root
	 user wants to cleanly shut down a jail. The jexec(8)
	 utility can also be used to start a shell in a jail to do
	 administration in it; for example:
jexec 1 tcsh

14.4.2. High-Level Administrative Tools in the FreeBSD Ports
	Collection
Among the many third-party utilities for jail
	administration, one of the most complete and useful is
	sysutils/ezjail. It is a set of scripts
	that contribute to jail(8) management. Please refer to
	the
	 handbook section on ezjail
	for more information.
14.4.3. Keeping Jails Patched and up to Date
Jails should be kept up to date from the host operating
	system as attempting to patch userland from within the jail
	may likely fail as the default behavior in FreeBSD is to
	disallow the use of chflags(1) in a jail which prevents
	the replacement of some files. It is possible to change this
	behavior but it is recommended to use freebsd-update(8)
	to maintain jails instead. Use -b to specify
	the path of the jail to be updated.
To update the jail to the latest patch release of the
	version of FreeBSD it is already running, then execute the
	following commands on the host:
freebsd-update -b /here/is/the/jail fetch
freebsd-update -b /here/is/the/jail install
To upgrade the jail to a new major or minor version,
	first upgrade the host system as described in
	Section 23.2.3, “Performing Major and Minor Version Upgrades”. Once the host has been
	upgraded and rebooted, the jail can then be upgraded.
	For example to upgrade from 12.0-RELEASE to 12.1-RELEASE,
	on the host run:
freebsd-update -b /here/is/the/jail --currently-running 12.0-RELEASE -r 12.1-RELEASE upgrade
freebsd-update -b /here/is/the/jail install
service jail restart myjail
freebsd-update -b /here/is/the/jail install
Then, if it was a major version upgrade, reinstall all
	installed packages and restart the jail again. This is
	required because the ABI version changes when upgrading
	between major versions of FreeBSD. From the host:
pkg -j myjail upgrade -f
service jail restart myjail
28.2. Mail Components
There are five major parts involved in an email exchange:
 the Mail User Agent (MUA), the Mail Transfer
 Agent (MTA), a mail host, a remote or local
 mailbox, and DNS. This section provides an
 overview of these components.
	Mail User Agent (MUA)
	The Mail User Agent (MUA) is an
	 application which is used to compose, send, and receive
	 emails. This application can be a command line program,
	 such as the built-in mail utility or a
	 third-party application from the Ports Collection, such as
	 mutt,
	 alpine, or
	 elm. Dozens of graphical
	 programs are also available in the Ports Collection,
	 including Claws Mail,
	 Evolution, and
	 Thunderbird. Some
	 organizations provide a web mail program which can be
	 accessed through a web browser. More information about
	 installing and using a MUA on FreeBSD can
	 be found in Section 28.10, “Mail User Agents”.

	Mail Transfer Agent (MTA)
	The Mail Transfer Agent (MTA) is
	 responsible for receiving incoming mail and delivering
	 outgoing mail. FreeBSD ships with
	 Sendmail as the default
	 MTA, but it also supports numerous
	 other mail server daemons, including
	 Exim,
	 Postfix, and
	 qmail.
	 Sendmail configuration is
	 described in Section 28.3, “Sendmail Configuration
	Files”. If another
	 MTA is installed using the Ports
	 Collection, refer to its post-installation message for
	 FreeBSD-specific configuration details and the application's
	 website for more general configuration
	 instructions.

	Mail Host and Mailboxes
	The mail host is a server that is responsible for
	 delivering and receiving mail for a host or a network.
	 The mail host collects all mail sent to the domain and
	 stores it either in the default mbox
	 or the alternative Maildir format, depending on the
	 configuration. Once mail has been stored, it may either
	 be read locally using a MUA or remotely
	 accessed and collected using protocols such as
	 POP or IMAP. If
	 mail is read locally, a POP or
	 IMAP server does not need to be
	 installed.
To access mailboxes remotely, a POP
	 or IMAP server is required as these
	 protocols allow users to connect to their mailboxes from
	 remote locations. IMAP offers several
	 advantages over POP. These include the
	 ability to store a copy of messages on a remote server
	 after they are downloaded and concurrent updates.
	 IMAP can be useful over low-speed links
	 as it allows users to fetch the structure of messages
	 without downloading them. It can also perform tasks such
	 as searching on the server in order to minimize data
	 transfer between clients and servers.
Several POP and
	 IMAP servers are available in the Ports
	 Collection. These include
	 mail/qpopper,
	 mail/imap-uw,
	 mail/courier-imap, and
	 mail/dovecot2.
Warning:
It should be noted that both POP
	 and IMAP transmit information,
	 including username and password credentials, in
	 clear-text. To secure the transmission of information
	 across these protocols, consider tunneling sessions over
	 ssh(1) (Section 13.8.1.2, “SSH Tunneling”)
	 or using SSL (Section 13.6, “OpenSSL”).

	Domain Name System (DNS)
	The Domain Name System (DNS) and
	 its daemon named play a large role in
	 the delivery of email. In order to deliver mail from one
	 site to another, the MTA will look up
	 the remote site in DNS to determine
	 which host will receive mail for the destination. This
	 process also occurs when mail is sent from a remote host
	 to the MTA.
In addition to mapping hostnames to
	 IP addresses, DNS is
	 responsible for storing information specific to mail
	 delivery, known as Mail eXchanger
	 MX records. The MX
	 record specifies which hosts will receive mail for a
	 particular domain.
To view the MX records for a
	 domain, specify the type of record. Refer to
	 host(1), for more details about this command:
% host -t mx FreeBSD.org
FreeBSD.org mail is handled by 10 mx1.FreeBSD.org
Refer to Section 29.7, “Domain Name System (DNS)” for more
	 information about DNS and its
	 configuration.

28.8. Using Mail with a Dialup Connection
When using a static IP address, one should not need to
 adjust the default configuration. Set the hostname to the
 assigned Internet name and Sendmail
 will do the rest.
When using a dynamically assigned IP address and a dialup
 PPP connection to the Internet, one usually has a mailbox on the
 ISP's mail server. In this example, the
 ISP's domain is example.net, the user name
 is user, the hostname
 is bsd.home, and
 the ISP has allowed relay.example.net as a mail
 relay.
In order to retrieve mail from the ISP's
 mailbox, install a retrieval agent from the Ports Collection.
 mail/fetchmail is a good choice as it
 supports many different protocols. Usually, the
 ISP will provide POP.
 When using user PPP, email can be
 automatically fetched when an Internet connection is established
 with the following entry in
 /etc/ppp/ppp.linkup:
MYADDR:
!bg su user -c fetchmail
When using Sendmail to deliver
 mail to non-local accounts, configure
 Sendmail to process the mail queue as
 soon as the Internet connection is established. To do this, add
 this line after the above fetchmail entry in
 /etc/ppp/ppp.linkup:
 !bg su user -c "sendmail -q"
In this example, there is an account for
 user on bsd.home. In the home
 directory of user on
 bsd.home, create a
 .fetchmailrc which contains this
 line:
poll example.net protocol pop3 fetchall pass MySecret
This file should not be readable by anyone except
 user as it contains
 the password MySecret.
In order to send mail with the correct
 from: header, configure
 Sendmail to use
 <user@example.net> rather than <user@bsd.home> and to send all mail via
 relay.example.net,
 allowing quicker mail transmission.
The following .mc should
 suffice:
VERSIONID(`bsd.home.mc version 1.0')
OSTYPE(bsd4.4)dnl
FEATURE(nouucp)dnl
MAILER(local)dnl
MAILER(smtp)dnl
Cwlocalhost
Cwbsd.home
MASQUERADE_AS(`example.net')dnl
FEATURE(allmasquerade)dnl
FEATURE(masquerade_envelope)dnl
FEATURE(nocanonify)dnl
FEATURE(nodns)dnl
define(`SMART_HOST', `relay.example.net')
Dmbsd.home
define(`confDOMAIN_NAME',`bsd.home')dnl
define(`confDELIVERY_MODE',`deferred')dnl
Refer to the previous section for details of how to convert
 this file into the sendmail.cf format. Do
 not forget to restart Sendmail after
 updating sendmail.cf.
Chapter 2. Installing FreeBSD
Restructured, reorganized, and parts rewritten
	 by Jim Mock. Updated for bsdinstall by Gavin Atkinson and Warren Block. Updated for root-on-ZFS by Allan Jude. 2.1. Synopsis
There are several different ways of getting FreeBSD to run,
 depending on the environment. Those are:
	Virtual Machine images, to download and import on a
	 virtual environment of choice. These can be downloaded from
	 the Download
	 FreeBSD page. There are images for KVM
	 (“qcow2”), VMWare (“vmdk”),
	 Hyper-V (“vhd”), and raw device images that are
	 universally supported. These are not installation images,
	 but rather the preconfigured (“already
	 installed”) instances, ready to run and perform
	 post-installation tasks.

	Virtual Machine images available at Amazon's AWS
	 Marketplace, Microsoft
	 Azure Marketplace, and Google
	 Cloud Platform, to run on their respective hosting
	 services. For more information on deploying FreeBSD on Azure
	 please consult the relevant chapter in the Azure
	 Documentation.

	SD card images, for embedded systems such as Raspberry
	 Pi or BeagleBone Black. These can be downloaded from the
	 Download
	 FreeBSD page. These files must be uncompressed and
	 written as a raw image to an SD card, from which the board
	 will then boot.

	Installation images, to install FreeBSD on
	 a hard drive for the usual desktop, laptop, or server
	 systems.

The rest of this chapter describes the fourth case,
 explaining how to install FreeBSD using the text-based
 installation program named
 bsdinstall.
In general, the installation instructions in this chapter
 are written for the i386™ and AMD64
 architectures. Where applicable, instructions specific to other
 platforms will be listed. There may be minor differences
 between the installer and what is shown here, so use this
 chapter as a general guide rather than as a set of literal
 instructions.
Note:
Users who prefer to install FreeBSD using a graphical
 installer may be interested in
 FuryBSD,
 GhostBSD or
 MidnightBSD.

After reading this chapter, you will know:
	The minimum hardware requirements and FreeBSD supported
	 architectures.

	How to create the FreeBSD installation media.

	How to start
	 bsdinstall.

	The questions bsdinstall will
	 ask, what they mean, and how to answer them.

	How to troubleshoot a failed installation.

	How to access a live version of FreeBSD before committing
	 to an installation.

Before reading this chapter, you should:
	Read the supported hardware list that shipped with the
	 version of FreeBSD to be installed and verify that the system's
	 hardware is supported.

21.2. FreeBSD as a Guest on Parallels for
 Mac OS® X
Parallels Desktop for Mac® is
 a commercial software product available for Intel® based
 Apple® Mac® computers running Mac OS® 10.4.6 or higher. FreeBSD
 is a fully supported guest operating system. Once
 Parallels has been installed on
 Mac OS® X, the user must configure a virtual machine and then
 install the desired guest operating system.
21.2.1. Installing FreeBSD on Parallels/Mac OS® X
The first step in installing FreeBSD on
	Parallels is to create a new
	virtual machine for installing FreeBSD. Select
	FreeBSD as the
	Guest OS Type when prompted:

Choose a reasonable amount of disk and memory
	depending on the plans for this virtual FreeBSD instance.
	4GB of disk space and 512MB of RAM work well for most uses
	of FreeBSD under Parallels:

Select the type of networking and a network
	interface:

Save and finish the configuration:

After the FreeBSD virtual machine has been created, FreeBSD
	can be installed on it. This is best done with an official
	FreeBSD CD/DVD or with an
	ISO image downloaded from an official
	FTP site. Copy the appropriate
	ISO image to the local Mac® filesystem or
	insert a CD/DVD in the
	Mac®'s CD-ROM drive. Click on the disc
	icon in the bottom right corner of the FreeBSD
	Parallels window. This will bring
	up a window that can be used to associate the
	CD-ROM drive in the virtual machine with
	the ISO file on disk or with the real
	CD-ROM drive.

Once this association with the CD-ROM
	source has been made, reboot the FreeBSD virtual machine by
	clicking the reboot icon.
	Parallels will reboot with a
	special BIOS that first checks if there is
	a CD-ROM.

In this case it will find the FreeBSD installation media and
	begin a normal FreeBSD installation. Perform the installation,
	but do not attempt to configure
	Xorg at this time.

When the installation is finished, reboot into the newly
	installed FreeBSD virtual machine.

21.2.2. Configuring FreeBSD on
	Parallels
After FreeBSD has been successfully installed on Mac OS® X
	with Parallels, there are a number
	of configuration steps that can be taken to optimize the
	system for virtualized operation.
	Set Boot Loader Variables
The most important step is to reduce the
	 kern.hz tunable to reduce the CPU
	 utilization of FreeBSD under the
	 Parallels environment. This is
	 accomplished by adding the following line to
	 /boot/loader.conf:
kern.hz=100
Without this setting, an idle FreeBSD
	 Parallels guest will use
	 roughly 15% of the CPU of a single processor iMac®.
	 After this change the usage will be closer to 5%.

	Create a New Kernel Configuration File
All of the SCSI, FireWire, and USB device drivers
	 can be removed from a custom kernel configuration file.
	 Parallels provides a virtual
	 network adapter used by the ed(4) driver, so all
	 network devices except for ed(4) and miibus(4)
	 can be removed from the kernel.

	Configure Networking
The most basic networking setup uses DHCP to connect
	 the virtual machine to the same local area network as the
	 host Mac®. This can be accomplished by adding
	 ifconfig_ed0="DHCP" to
	 /etc/rc.conf. More advanced
	 networking setups are described in
	 Chapter 31, Advanced Networking.

B.9. Periodicals, Journals, and Magazines
	Admin
	 Magazin (in German), published by
	 Medialinx AG. ISSN: 2190-1066

	BSD
	 Magazine, published by Software Press Sp. z o.o.
	 SK. ISSN: 1898-9144

	BSD Now
	 — Video Podcast, published by
	 Jupiter Broadcasting LLC

	BSD
	 Talk Podcast, by Will Backman

	FreeBSD
	 Journal, published by S&W
	 Publishing, sponsored by The FreeBSD Foundation.
	 ISBN: 978-0-615-88479-0

Chapter 19. The Z File System (ZFS)
Written by Tom Rhodes, Allan Jude, Benedict Reuschling and Warren Block. The Z File System, or
 ZFS, is an advanced file system designed to
 overcome many of the major problems found in previous
 designs.
Originally developed at Sun™, ongoing open source
 ZFS development has moved to the OpenZFS Project.
ZFS has three major design goals:
	Data integrity: All data includes a
	checksum of the data.
	When data is written, the checksum is calculated and written
	along with it. When that data is later read back, the
	checksum is calculated again. If the checksums do not match,
	a data error has been detected. ZFS will
	attempt to automatically correct errors when data redundancy
	is available.

	Pooled storage: physical storage devices are added to a
	pool, and storage space is allocated from that shared pool.
	Space is available to all file systems, and can be increased
	by adding new storage devices to the pool.

	Performance: multiple caching mechanisms provide increased
	performance. ARC is an
	advanced memory-based read cache. A second level of
	disk-based read cache can be added with
	L2ARC, and disk-based
	synchronous write cache is available with
	ZIL.

A complete list of features and terminology is shown in
 Section 19.8, “ZFS Features and Terminology”.
19.1. What Makes ZFS Different
ZFS is significantly different from any
 previous file system because it is more than just a file system.
 Combining the traditionally separate roles of volume manager and
 file system provides ZFS with unique
 advantages. The file system is now aware of the underlying
 structure of the disks. Traditional file systems could only be
 created on a single disk at a time. If there were two disks
 then two separate file systems would have to be created. In a
 traditional hardware RAID configuration, this
 problem was avoided by presenting the operating system with a
 single logical disk made up of the space provided by a number of
 physical disks, on top of which the operating system placed a
 file system. Even in the case of software
 RAID solutions like those provided by
 GEOM, the UFS file system
 living on top of the RAID transform believed
 that it was dealing with a single device.
 ZFS's combination of the volume manager and
 the file system solves this and allows the creation of many file
 systems all sharing a pool of available storage. One of the
 biggest advantages to ZFS's awareness of the
 physical layout of the disks is that existing file systems can
 be grown automatically when additional disks are added to the
 pool. This new space is then made available to all of the file
 systems. ZFS also has a number of different
 properties that can be applied to each file system, giving many
 advantages to creating a number of different file systems and
 datasets rather than a single monolithic file system.
4.4. Using pkg for Binary Package
 Management
pkg is the next generation
 replacement for the traditional FreeBSD package management tools,
 offering many features that make dealing with binary packages
 faster and easier.
For sites wishing to only use prebuilt binary packages
 from the FreeBSD mirrors, managing packages with
 pkg can be sufficient.
However, for those sites building from source or using their
 own repositories, a separate port management tool
 will be needed.
Since pkg only works with
 binary packages, it
 is not a replacement for such tools. Those tools can be
 used to install software from both binary packages
 and the Ports Collection, while
 pkg installs only binary
 packages.
4.4.1. Getting Started with
	pkg
FreeBSD includes a bootstrap utility which can be used to
	download and install pkg
	and its manual pages. This utility is designed to work
	with versions of FreeBSD starting with
	10.X.
Note:
Not all FreeBSD versions and architectures
	 support this bootstrap process. The current list is at
	 https://pkg.freebsd.org/.
	 For other cases,
	 pkg must instead be installed
	 from the Ports Collection or as a binary package.

To bootstrap the system, run:
/usr/sbin/pkg
You must have a working Internet connection for the
	bootstrap process to succeed.
Otherwise, to install the port, run:
cd /usr/ports/ports-mgmt/pkg
make
make install clean
When upgrading an existing system that originally used the
	older pkg_* tools, the database must be converted to the
	new format, so that the new tools are aware of the already
	installed packages. Once pkg has
	been installed, the
	package database must be converted from the traditional format
	to the new format by running this command:
pkg2ng
Note:
This step is not required for new installations that
	do not yet have any third-party software
	installed.

Important:
This step is not reversible. Once the package database
	 has been converted to the pkg
	 format, the traditional pkg_* tools
	 should no longer be used.

Note:
The package database conversion may emit errors as the
	 contents are converted to the new version. Generally, these
	 errors can be safely ignored. However, a list of
	 software that was not successfully converted
	 is shown after pkg2ng finishes.
	 These applications must be manually reinstalled.

To ensure that the Ports Collection registers
	new software with pkg instead of
	the traditional packages database, FreeBSD versions earlier than
	10.X require this line in
	/etc/make.conf:
WITH_PKGNG=	yes
By default, pkg uses the
	binary packages from the FreeBSD
	package mirrors (the repository).
	For information about building a custom
	package repository, see
	Section 4.6, “Building Packages with
 Poudriere”.
Additional pkg configuration
	options are described in pkg.conf(5).
Usage information for pkg is
	available in the pkg(8) manual page or by running
	pkg without additional arguments.
Each pkg command argument is
	documented in a command-specific manual page. To read the
	manual page for pkg install, for example,
	run either of these commands:
pkg help install
man pkg-install
The rest of this section demonstrates common binary
	package management tasks which can be performed using
	pkg. Each demonstrated command
	provides many switches to customize its use. Refer to a
	command's help or man page for details and more
	examples.
4.4.2. Quarterly and Latest Ports Branches
The Quarterly branch provides users
	with a more predictable and stable experience for port and
	package installation and upgrades. This is done essentially
	by only allowing non-feature updates. Quarterly branches aim
	to receive security fixes (that may be version updates, or
	backports of commits), bug fixes and ports compliance or
	framework changes. The Quarterly branch is cut from HEAD at
	the beginning of every (yearly) quarter in January, April,
	July, and October. Branches are named according to the year
	(YYYY) and quarter (Q1-4) they are created in. For example,
	the quarterly branch created in January 2016, is named 2016Q1.
	And the Latest branch provides the latest
	versions of the packages to the users.
To switch from quarterly to latest run the following
	commands:
cp /etc/pkg/FreeBSD.conf /usr/local/etc/pkg/repos/FreeBSD.conf
Edit the file
	/usr/local/etc/pkg/repos/FreeBSD.conf
	and change the string quarterly to
	latest in the url:
	line.
The result should be similar to the following:
FreeBSD: {
 url: "pkg+http://pkg.FreeBSD.org/${ABI}/latest",
 mirror_type: "srv",
 signature_type: "fingerprints",
 fingerprints: "/usr/share/keys/pkg",
 enabled: yes
}
And finally run this command to update from the new
	(latest) repository metadata.
pkg update -f
4.4.3. Obtaining Information About Installed Packages
Information about the packages installed on a system
	can be viewed by running pkg info which,
	when run without any switches, will list the package version
	for either all installed packages or the specified
	package.
For example, to see which version of
	pkg is installed, run:
pkg info pkg
pkg-1.1.4_1
4.4.4. Installing and Removing Packages
To install a binary package use the following command,
	where packagename is the name of
	the package to install:
pkg install packagename
This command uses repository data to determine which
	version of the software to install and if it has any
	uninstalled dependencies. For example, to install
	curl:
pkg install curl
Updating repository catalogue
/usr/local/tmp/All/curl-7.31.0_1.txz 100% of 1181 kB 1380 kBps 00m01s

/usr/local/tmp/All/ca_root_nss-3.15.1_1.txz 100% of 288 kB 1700 kBps 00m00s

Updating repository catalogue
The following 2 packages will be installed:

 Installing ca_root_nss: 3.15.1_1
 Installing curl: 7.31.0_1

The installation will require 3 MB more space

0 B to be downloaded

Proceed with installing packages [y/N]: y
Checking integrity... done
[1/2] Installing ca_root_nss-3.15.1_1... done
[2/2] Installing curl-7.31.0_1... done
Cleaning up cache files...Done
The new package and any additional packages that were
	 installed as dependencies can be seen in the installed
	 packages list:
pkg info
ca_root_nss-3.15.1_1	The root certificate bundle from the Mozilla Project
curl-7.31.0_1	Non-interactive tool to get files from FTP, GOPHER, HTTP(S) servers
pkg-1.1.4_6	New generation package manager
Packages that are no longer needed can be removed with
	 pkg delete. For example:
pkg delete curl
The following packages will be deleted:

	curl-7.31.0_1

The deletion will free 3 MB

Proceed with deleting packages [y/N]: y
[1/1] Deleting curl-7.31.0_1... done
4.4.5. Upgrading Installed Packages
Installed packages can be upgraded to their latest
	versions by running:
pkg upgrade
This command will compare the installed versions with
	those available in the repository catalogue and upgrade them
	from the repository.
4.4.6. Auditing Installed Packages
Software vulnerabilities are regularly discovered
	in third-party applications. To address this,
	pkg includes a built-in auditing
	mechanism. To determine if there are any known
	vulnerabilities for the software installed on the system,
	run:
pkg audit -F
4.4.7. Automatically Removing Unused Packages
Removing a package may leave behind dependencies which
	are no longer required. Unneeded packages that were installed
	as dependencies (leaf packages) can be automatically detected
	and removed using:
pkg autoremove
Packages to be autoremoved:
	ca_root_nss-3.15.1_1

The autoremoval will free 723 kB

Proceed with autoremoval of packages [y/N]: y
Deinstalling ca_root_nss-3.15.1_1... done
Packages installed as dependencies are
	called automatic packages. Non-automatic
	packages, i.e the packages that were explicity installed not
	as a dependency to another package, can be listed
	using:
pkg prime-list
nginx
openvpn
sudo
pkg prime-list is an alias command
	declared in /usr/local/etc/pkg.conf.
	There are many others that can be used to query the package
	database of the system. For instance, command
	pkg prime-origins can be used to get the
	origin port directory of the list mentioned above:
pkg prime-origins
www/nginx
security/openvpn
security/sudo
This list can be used to rebuild all packages
	installed on a system using build tools such as
	ports-mgmt/poudriere or
	ports-mgmt/synth.
Marking an installed package as automatic can be
 done using:
pkg set -A 1 devel/cmake
Once a package is a leaf package and is marked
	as automatic, it gets selected by
	pkg autoremove.
Marking an installed package as not
	automatic can be done using:
pkg set -A 0 devel/cmake
4.4.8. Restoring the Package Database
Unlike the traditional package management system,
	pkg includes its own package
	database backup mechanism. This functionality is enabled by
	default.
Tip:
To disable the periodic script from backing up the
	 package database, set
	 daily_backup_pkgdb_enable="NO" in
	 periodic.conf(5).

To restore the contents of a previous package database
	backup, run the following command replacing
	/path/to/pkg.sql with the location
	of the backup:
pkg backup -r /path/to/pkg.sql
Note:
If restoring a backup taken by the periodic script,
	 it must be decompressed prior to being restored.

To run a manual backup of the
	pkg database, run the following
	command, replacing /path/to/pkg.sql
	with a suitable file name and location:
pkg backup -d /path/to/pkg.sql
4.4.9. Removing Stale Packages
By default, pkg stores
	binary packages in a cache directory defined by
	PKG_CACHEDIR in pkg.conf(5). Only copies
	of the latest installed packages are kept. Older versions of
	pkg kept all previous packages. To
	remove these outdated binary packages, run:
pkg clean
The entire cache may be cleared by running:
pkg clean -a
4.4.10. Modifying Package Metadata
Software within the FreeBSD Ports Collection can
	undergo major version number changes. To address this,
	pkg has a built-in command to
	update package origins. This can be useful, for example, if
	lang/php5 is renamed to
	lang/php53 so that
	lang/php5 can now
	represent version 5.4.
To change the package origin for the above example,
	run:
pkg set -o lang/php5:lang/php53
As another example, to update
	lang/ruby18 to
	lang/ruby19, run:
pkg set -o lang/ruby18:lang/ruby19
As a final example, to change the origin of the
	libglut shared libraries from
	graphics/libglut to
	graphics/freeglut, run:
pkg set -o graphics/libglut:graphics/freeglut
Note:
When changing package origins, it is important to
	 reinstall packages that are dependent on the package with
	 the modified origin. To force a reinstallation of dependent
	 packages, run:
pkg install -Rf graphics/freeglut

Part V. Appendices

26.5. Dial-out Service
The following are tips for getting the host to connect over
 the modem to another computer. This is appropriate for
 establishing a terminal session with a remote host.
This kind of connection can be helpful to get a file on the
 Internet if there are problems using PPP. If PPP is not
 working, use the terminal session to FTP the needed file. Then
 use zmodem to transfer it to the machine.
26.5.1. Using a Stock Hayes Modem
A generic Hayes dialer is built into
	tip. Use at=hayes in
	/etc/remote.
The Hayes driver is not smart enough to recognize some of
	the advanced features of newer modems messages like
	BUSY, NO DIALTONE, or
	CONNECT 115200. Turn those messages off
	when using tip with
	ATX0&W.
The dial timeout for tip is 60
	seconds. The modem should use something less, or else
	tip will think there is a communication
	problem. Try ATS7=45&W.
26.5.2. Using AT Commands
Create a “direct” entry in
	/etc/remote. For example, if the modem
	is hooked up to the first serial port,
	/dev/cuau0, use the following
	line:
cuau0:dv=/dev/cuau0:br#19200:pa=none
Use the highest bps rate the modem
	supports in the br capability. Then, type
	tip cuau0 to connect to the modem.
Or, use cu as root with the following
	 command:
cu -lline -sspeed
line is the serial port, such
	as /dev/cuau0, and
	speed is the speed, such as
	57600. When finished entering the AT
	commands, type ~. to exit.
26.5.3. The @ Sign Does Not Work
The @ sign in the phone number
	capability tells tip to look in
	/etc/phones for a phone number. But, the
	@ sign is also a special character in
	capability files like /etc/remote, so it
	needs to be escaped with a backslash:
pn=\@
26.5.4. Dialing from the Command Line
Put a “generic” entry in
	/etc/remote. For example:
tip115200|Dial any phone number at 115200 bps:\
 :dv=/dev/cuau0:br#115200:at=hayes:pa=none:du:
tip57600|Dial any phone number at 57600 bps:\
 :dv=/dev/cuau0:br#57600:at=hayes:pa=none:du:
This should now work:
tip -115200 5551234
Users who prefer cu over
	tip, can use a generic
	cu entry:
cu115200|Use cu to dial any number at 115200bps:\
 :dv=/dev/cuau1:br#57600:at=hayes:pa=none:du:
and type:
cu 5551234 -s 115200
26.5.5. Setting the bps Rate
Put in an entry for tip1200 or
	cu1200, but go ahead and use whatever
	bps rate is appropriate with the
	br capability.
	tip thinks a good default is 1200 bps
	which is why it looks for a tip1200 entry.
	1200 bps does not have to be used, though.
26.5.6. Accessing a Number of Hosts Through a Terminal
	Server
Rather than waiting until connected and typing
	CONNECT host
	each time, use tip's cm
	capability. For example, these entries in
	/etc/remote will let you type
	tip pain or tip muffin
	to connect to the hosts pain or
	muffin, and tip
	 deep13 to connect to the terminal server.
pain|pain.deep13.com|Forrester's machine:\
 :cm=CONNECT pain\n:tc=deep13:
muffin|muffin.deep13.com|Frank's machine:\
 :cm=CONNECT muffin\n:tc=deep13:
deep13:Gizmonics Institute terminal server:\
 :dv=/dev/cuau2:br#38400:at=hayes:du:pa=none:pn=5551234:
26.5.7. Using More Than One Line with
	tip
This is often a problem where a university has several
	modem lines and several thousand students trying to use
	them.
Make an entry in /etc/remote and use
	@ for the pn
	capability:
big-university:\
 :pn=\@:tc=dialout
dialout:\
 :dv=/dev/cuau3:br#9600:at=courier:du:pa=none:
Then, list the phone numbers in
	/etc/phones:
big-university 5551111
big-university 5551112
big-university 5551113
big-university 5551114
tip will try each number in the listed
	order, then give up. To keep retrying, run
	tip in a while
	loop.
26.5.8. Using the Force Character
Ctrl+P is the default “force” character,
	used to tell tip that the next character is
	literal data. The force character can be set to any other
	character with the ~s escape, which means
	“set a variable.”
Type
	~sforce=single-char
	followed by a newline. single-char
	is any single character. If
	single-char is left out, then the
	force character is the null character, which is accessed by
	typing
	Ctrl+2
	or Ctrl+Space. A pretty good value for
	single-char is
	Shift+Ctrl+6, which is only used on some terminal
	servers.
To change the force character, specify the following in
	~/.tiprc:
force=single-char
26.5.9. Upper Case Characters
This happens when
	Ctrl+A is pressed, which is tip's
	“raise character”, specially designed for people
	with broken caps-lock keys. Use ~s to set
	raisechar to something reasonable. It can
	be set to be the same as the force character, if neither
	feature is used.
Here is a sample ~/.tiprc for
	Emacs users who need to type
	Ctrl+2 and Ctrl+A:
force=^^
raisechar=^^
The ^^ is
	Shift+Ctrl+6.
26.5.10. File Transfers with tip
When talking to another UNIX®-like operating system,
	files can be sent and received using ~p
	(put) and ~t (take). These commands run
	cat and echo on the
	remote system to accept and send files. The syntax is:
~p local-file [remote-file]

~t remote-file [local-file]

There is no error checking, so another protocol, like
	zmodem, should probably be used.
26.5.11. Using zmodem with
	tip?
To receive files, start the sending program on the remote
	end. Then, type ~C rz to begin receiving
	them locally.
To send files, start the receiving program on the remote
	end. Then, type ~C sz
	files to send them to the
	remote system.
8.2. Why Build a Custom Kernel?
Traditionally, FreeBSD used a monolithic kernel. The kernel
 was one large program, supported a fixed list of devices, and in
 order to change the kernel's behavior, one had to compile and
 then reboot into a new kernel.
Today, most of the functionality in the FreeBSD kernel is
 contained in modules which can be dynamically loaded and
 unloaded from the kernel as necessary. This allows the running
 kernel to adapt immediately to new hardware and for new
 functionality to be brought into the kernel. This is known as
 a modular kernel.
Occasionally, it is still necessary to perform static kernel
 configuration. Sometimes the needed functionality is so tied
 to the kernel that it can not be made dynamically loadable.
 Some security environments prevent the loading and unloading of
 kernel modules and require that only needed functionality is
 statically compiled into the kernel.
Building a custom kernel is often a rite of passage for
 advanced BSD users. This process, while time consuming, can
 provide benefits to the FreeBSD system. Unlike the
 GENERIC kernel, which must support a wide
 range of hardware, a custom kernel can be stripped down to only
 provide support for that computer's hardware. This has a number
 of benefits, such as:
	Faster boot time. Since the kernel will only probe the
	 hardware on the system, the time it takes the system to boot
	 can decrease.

	Lower memory usage. A custom kernel often uses less
	 memory than the GENERIC kernel by
	 omitting unused features and device drivers. This is
	 important because the kernel code remains resident in
	 physical memory at all times, preventing that memory from
	 being used by applications. For this reason, a custom
	 kernel is useful on a system with a small amount of
	 RAM.

	Additional hardware support. A custom kernel can add
	 support for devices which are not present in the
	 GENERIC kernel.

Before building a custom kernel, consider the reason for
 doing so. If there is a need for specific hardware support,
 it may already exist as a module.
Kernel modules exist in /boot/kernel
 and may be dynamically loaded into the running kernel using
 kldload(8). Most kernel drivers have a loadable module and
 manual page. For example, the ath(4) wireless Ethernet
 driver has the following information in its manual page:
Alternatively, to load the driver as a module at boot time, place the
following line in loader.conf(5):

 if_ath_load="YES"
Adding if_ath_load="YES" to
 /boot/loader.conf will load this module
 dynamically at boot time.
In some cases, there is no associated module in
 /boot/kernel. This is mostly true for
 certain subsystems.
Chapter 16. Security Event Auditing
Written by Tom Rhodes and Robert Watson. 16.1. Synopsis
The FreeBSD operating system includes support for security
 event auditing. Event auditing supports reliable, fine-grained,
 and configurable logging of a variety of security-relevant
 system events, including logins, configuration changes, and file
 and network access. These log records can be invaluable for
 live system monitoring, intrusion detection, and postmortem
 analysis. FreeBSD implements Sun™'s published Basic Security
 Module (BSM) Application Programming
 Interface (API) and file format, and is
 interoperable with the Solaris™ and Mac OS® X audit
 implementations.
This chapter focuses on the installation and configuration
 of event auditing. It explains audit policies and provides an
 example audit configuration.
After reading this chapter, you will know:
	What event auditing is and how it works.

	How to configure event auditing on FreeBSD for users and
	 processes.

	How to review the audit trail using the audit reduction
	 and review tools.

Before reading this chapter, you should:
	Understand UNIX® and FreeBSD basics
	 (Chapter 3, FreeBSD Basics).

	Be familiar with the basics of kernel
	 configuration/compilation (Chapter 8, Configuring the FreeBSD Kernel).

	Have some familiarity with security and how it pertains
	 to FreeBSD (Chapter 13, Security).

Warning:
The audit facility has some known limitations. Not all
	security-relevant system events are auditable and some login
	mechanisms, such as Xorg-based
	display managers and third-party daemons, do not properly
	configure auditing for user login sessions.
The security event auditing facility is able to generate
	very detailed logs of system activity. On a busy system,
	trail file data can be very large when configured for high
	detail, exceeding gigabytes a week in some configurations.
	Administrators should take into account the disk space
	requirements associated with high volume audit configurations.
	For example, it may be desirable to dedicate a file system to
	/var/audit so that other file systems are
	not affected if the audit file system becomes full.

20.2. Linux® File Systems
FreeBSD provides built-in support for several Linux® file
 systems. This section demonstrates how to load support for and
 how to mount the supported Linux® file systems.
20.2.1. ext2
Kernel support for ext2 file systems has
	been available since FreeBSD 2.2. In FreeBSD 8.x and
	earlier, the code is licensed under the
	GPL. Since FreeBSD 9.0, the code has
	been rewritten and is now BSD
	licensed.
The ext2fs(5) driver allows the FreeBSD kernel to both
	read and write to ext2 file systems.
Note:
This driver can also be used to access ext3 and ext4
	 file systems. The ext2fs(5) filesystem has full read
	 and write support for ext4 as of FreeBSD 12.0-RELEASE.
	 Additionally, extended attributes and ACLs are also
	 supported, while journalling and encryption are not.
	 Starting with FreeBSD 12.1-RELEASE, a DTrace provider will
	 be available as well. Prior versions of FreeBSD can access
	 ext4 in read and write mode using
	 sysutils/fusefs-ext2.

To access an ext file system, first
	load the kernel loadable module:
kldload ext2fs
Then, mount the ext volume by specifying its FreeBSD
	partition name and an existing mount point. This example
	mounts /dev/ad1s1 on
	/mnt:
mount -t ext2fs /dev/ad1s1 /mnt
9.6. Other Printing Systems
Several other printing systems are available in
 addition to the built-in lpd(8). These systems
 offer support for other protocols or additional features.
9.6.1. CUPS (Common UNIX® Printing
	System)
CUPS is a popular printing system
	available on many operating systems. Using
	CUPS on FreeBSD is documented in a separate
	article:../../../../doc/en_US.ISO8859-1/articles/cups
9.6.2. HPLIP
Hewlett Packard provides a printing system that supports
	many of their inkjet and laser printers. The port is
	print/hplip. The main web page
	is at http://hplipopensource.com/hplip-web/index.html.
	The port handles all the installation details on FreeBSD.
	Configuration information is shown at http://hplipopensource.com/hplip-web/install/manual/hp_setup.html.
9.6.3. LPRng
LPRng was developed as an
	enhanced alternative to lpd(8). The port is
	sysutils/LPRng. For details
	and documentation, see
	http://www.lprng.com/.
17.10. File System Snapshots
Contributed by Tom Rhodes. FreeBSD offers a feature in conjunction with
 Soft Updates: file system
 snapshots.
UFS snapshots allow a user to create images of specified
 file systems, and treat them as a file. Snapshot files must be
 created in the file system that the action is performed on, and
 a user may create no more than 20 snapshots per file system.
 Active snapshots are recorded in the superblock so they are
 persistent across unmount and remount operations along with
 system reboots. When a snapshot is no longer required, it can
 be removed using rm(1). While snapshots may be removed in
 any order, all the used space may not be acquired because
 another snapshot will possibly claim some of the released
 blocks.
The un-alterable snapshot file flag is set
 by mksnap_ffs(8) after initial creation of a snapshot file.
 unlink(1) makes an exception for snapshot files since it
 allows them to be removed.
Snapshots are created using mount(8). To place a
 snapshot of /var in the
 file /var/snapshot/snap, use the following
 command:
mount -u -o snapshot /var/snapshot/snap /var
Alternatively, use mksnap_ffs(8) to create the
 snapshot:
mksnap_ffs /var /var/snapshot/snap
One can find snapshot files on a file system, such as
 /var, using
 find(1):
find /var -flags snapshot
Once a snapshot has been created, it has several
 uses:
	Some administrators will use a snapshot file for backup
	 purposes, because the snapshot can be transferred to
	 CDs or tape.

	The file system integrity checker, fsck(8), may be
	 run on the snapshot. Assuming that the file system was
	 clean when it was mounted, this should always provide a
	 clean and unchanging result.

	Running dump(8) on the snapshot will produce a dump
	 file that is consistent with the file system and the
	 timestamp of the snapshot. dump(8) can also take a
	 snapshot, create a dump image, and then remove the snapshot
	 in one command by using -L.

	The snapshot can be mounted as a frozen image of the
	 file system. To mount(8) the snapshot
	 /var/snapshot/snap run:
mdconfig -a -t vnode -o readonly -f /var/snapshot/snap -u 4
mount -r /dev/md4 /mnt

The frozen /var is now available
 through /mnt. Everything will initially be
 in the same state it was during the snapshot creation time. The
 only exception is that any earlier snapshots will appear as zero
 length files. To unmount the snapshot, use:
umount /mnt
mdconfig -d -u 4
For more information about softupdates and
 file system snapshots, including technical papers, visit
 Marshall Kirk McKusick's website at http://www.mckusick.com/.
28.6. Advanced Topics
This section covers more involved topics such as mail
 configuration and setting up mail for an entire domain.
28.6.1. Basic Configuration
Out of the box, one can send email to external hosts as
	long as /etc/resolv.conf is configured or
	the network has access to a configured DNS
	server. To have email delivered to the MTA
	on the FreeBSD host, do one of the following:
	Run a DNS server for the
	 domain.

	Get mail delivered directly to the
	 FQDN for the machine.

In order to have mail delivered directly to a host, it
	must have a permanent static IP address, not a dynamic IP
	address. If the system is behind a firewall, it must be
	configured to allow SMTP traffic. To receive mail directly at
	a host, one of these two must be configured:
	Make sure that the lowest-numbered
	 MX record in
	 DNS points to the host's static IP
	 address.

	Make sure there is no MX entry in
	 the DNS for the host.

Either of the above will allow mail to be received
	directly at the host.
Try this:
hostname
example.FreeBSD.org
host example.FreeBSD.org
example.FreeBSD.org has address 204.216.27.XX
In this example, mail sent directly to
	<yourlogin@example.FreeBSD.org>
	should work without problems, assuming
	Sendmail is running correctly on
	example.FreeBSD.org.
For this example:
host example.FreeBSD.org
example.FreeBSD.org has address 204.216.27.XX
example.FreeBSD.org mail is handled (pri=10) by nevdull.FreeBSD.org
All mail sent to example.FreeBSD.org will
	be collected on hub under the same
	username instead of being sent directly to your host.
The above information is handled by the
	DNS server. The DNS
	record that carries mail routing information is the
	MX entry. If no MX
	record exists, mail will be delivered directly to the host by
	way of its IP address.
The MX entry for freefall.FreeBSD.org at
	one time looked like this:
freefall		MX	30	mail.crl.net
freefall		MX	40	agora.rdrop.com
freefall		MX	10	freefall.FreeBSD.org
freefall		MX	20	who.cdrom.com
freefall had many
	MX entries. The lowest
	MX number is the host that receives mail
	directly, if available. If it is not accessible for some
	reason, the next lower-numbered host will accept messages
	temporarily, and pass it along when a lower-numbered host
	becomes available.
Alternate MX sites should have separate
	Internet connections in order to be most useful. Your
	ISP can provide this service.
28.6.2. Mail for a Domain
When configuring a MTA for a network,
	any mail sent to hosts in its domain should be diverted to the
	MTA so that users can receive their mail on
	the master mail server.
To make life easiest, a user account with the same
	username should exist on both the
	MTA and the system with the
	MUA. Use adduser(8) to create the
	user accounts.
The MTA must be the designated mail
	exchanger for each workstation on the network. This is done
	in theDNS configuration with an
	MX record:
example.FreeBSD.org	A	204.216.27.XX		; Workstation
			MX	10 nevdull.FreeBSD.org	; Mailhost
This will redirect mail for the workstation to the
	MTA no matter where the A record points.
	The mail is sent to the MX host.
This must be configured on a DNS
	server. If the network does not run its own
	DNS server, talk to the
	ISP or DNS
	provider.
The following is an example of virtual email hosting.
	Consider a customer with the domain customer1.org, where all
	the mail for customer1.org should be
	sent to mail.myhost.com. The
	DNS entry should look like this:
customer1.org		MX	10	mail.myhost.com
An A> record is
	not needed for customer1.org in order to
	only handle email for that domain. However, running
	ping against customer1.org will not
	work unless an A record exists for
	it.
Tell the MTA which domains and/or
	hostnames it should accept mail for. Either of the following
	will work for Sendmail:
	Add the hosts to
	 /etc/mail/local-host-names when
	 using the FEATURE(use_cw_file).

	Add a Cwyour.host.com line to
	 /etc/sendmail.cf.

4.3. Finding Software
FreeBSD's list of available applications is growing all the
 time. There are a number of ways to find software to
 install:
	The FreeBSD web site maintains an up-to-date searchable
	 list of all the available applications, at https://www.FreeBSD.org/ports/.
	 The ports can be searched by application name or by
	 software category.

	Dan Langille maintains FreshPorts.org
	 which provides a comprehensive search utility and also
	 tracks changes to the applications in the Ports Collection.
	 Registered users can create a customized watch list in order
	 to receive an automated email when their watched ports are
	 updated.

	If finding a particular application becomes challenging,
	 try searching a site like SourceForge.net
	 or GitHub.com then
	 check back at the FreeBSD site
	 to see if the application has been ported.

	To search the binary package
	 repository for an application:
pkg search subversion
git-subversion-1.9.2
java-subversion-1.8.8_2
p5-subversion-1.8.8_2
py27-hgsubversion-1.6
py27-subversion-1.8.8_2
ruby-subversion-1.8.8_2
subversion-1.8.8_2
subversion-book-4515
subversion-static-1.8.8_2
subversion16-1.6.23_4
subversion17-1.7.16_2
Package names include the version number and, in the
	 case of ports based on python, the version number of the
	 version of python the package was built with. Some ports
	 also have multiple versions available. In the case of
	 Subversion, there are different
	 versions available, as well as different compile options.
	 In this case, the statically linked version of
	 Subversion. When indicating
	 which package to install, it is best to specify the
	 application by the port origin, which is the path in the
	 ports tree. Repeat the pkg search with
	 -o to list the origin of each
	 package:
pkg search -o subversion
devel/git-subversion
java/java-subversion
devel/p5-subversion
devel/py-hgsubversion
devel/py-subversion
devel/ruby-subversion
devel/subversion16
devel/subversion17
devel/subversion
devel/subversion-book
devel/subversion-static
Searching by shell globs, regular expressions, exact
	 match, by description, or any other field in the repository
	 database is also supported by pkg search.
	 After installing ports-mgmt/pkg or
	 ports-mgmt/pkg-devel, see
	 pkg-search(8) for more details.

	If the Ports Collection is already installed, there are
	 several methods to query the local version of the ports
	 tree. To find out which category a port is in, type
	 whereis file,
	 where file is the program to be
	 installed:
whereis lsof
lsof: /usr/ports/sysutils/lsof
Alternately, an echo(1) statement can be
	 used:
echo /usr/ports/*/*lsof*
/usr/ports/sysutils/lsof
Note that this will also return any matched files
	 downloaded into the
	 /usr/ports/distfiles directory.

	Another way to find software is by using the Ports
	 Collection's built-in search mechanism. To use the search
	 feature, cd to
	 /usr/ports then run make
	 search name=program-name where
	 program-name is the name of the
	 software. For example, to search for
	 lsof:
cd /usr/ports
make search name=lsof
Port: lsof-4.88.d,8
Path: /usr/ports/sysutils/lsof
Info: Lists information about open files (similar to fstat(1))
Maint: ler@lerctr.org
Index: sysutils
B-deps:
R-deps:
Tip:
The built-in search mechanism uses a file
	 of index information. If a message indicates that the
	 INDEX is required, run
	 make fetchindex to download the current
	 index file. With the INDEX present,
	 make search will be able to perform the
	 requested search.

The “Path:” line indicates where to find
	 the port.
To receive less information, use the
	 quicksearch feature:
cd /usr/ports
make quicksearch name=lsof
Port: lsof-4.88.d,8
Path: /usr/ports/sysutils/lsof
Info: Lists information about open files (similar to fstat(1))
For more in-depth searching, use
	 make search
	 key=string or
	 make quicksearch
	 key=string, where
	 string is some text to search
	 for. The text can be in comments, descriptions, or
	 dependencies in order to find ports which relate to a
	 particular subject when the name of the program is
	 unknown.
When using search or
	 quicksearch, the search string
	 is case-insensitive. Searching for “LSOF” will
	 yield the same results as searching for
	 “lsof”.

16.4. Working with Audit Trails
Since audit trails are stored in the BSM
 binary format, several built-in tools are available to modify or
 convert these trails to text. To convert trail files to a
 simple text format, use praudit. To reduce
 the audit trail file for analysis, archiving, or printing
 purposes, use auditreduce. This utility
 supports a variety of selection parameters, including event
 type, event class, user, date or time of the event, and the file
 path or object acted on.
For example, to dump the entire contents of a specified
 audit log in plain text:
praudit /var/audit/AUDITFILE
Where AUDITFILE is the audit log
 to dump.
Audit trails consist of a series of audit records made up of
 tokens, which praudit prints sequentially,
 one per line. Each token is of a specific type, such as
 header (an audit record header) or
 path (a file path from a name lookup). The
 following is an example of an
 execve event:
header,133,10,execve(2),0,Mon Sep 25 15:58:03 2006, + 384 msec
exec arg,finger,doug
path,/usr/bin/finger
attribute,555,root,wheel,90,24918,104944
subject,robert,root,wheel,root,wheel,38439,38032,42086,128.232.9.100
return,success,0
trailer,133
This audit represents a successful
 execve call, in which the command
 finger doug has been run. The
 exec arg token contains the processed command
 line presented by the shell to the kernel. The
 path token holds the path to the executable
 as looked up by the kernel. The attribute
 token describes the binary and includes the file mode. The
 subject token stores the audit user ID,
 effective user ID and group ID, real user ID and group ID,
 process ID, session ID, port ID, and login address. Notice that
 the audit user ID and real user ID differ as the user
 robert switched to the
 root account before
 running this command, but it is audited using the original
 authenticated user. The return token
 indicates the successful execution and the
 trailer concludes the record.
XML output format is also supported and
 can be selected by including -x.
Since audit logs may be very large, a subset of records can
 be selected using auditreduce. This example
 selects all audit records produced for the user
 trhodes stored in
 AUDITFILE:
auditreduce -u trhodes /var/audit/AUDITFILE | praudit
Members of the audit group have permission to
 read audit trails in /var/audit. By
 default, this group is empty, so only the root user can read audit trails.
 Users may be added to the audit group in order to
 delegate audit review rights. As the ability to track audit log
 contents provides significant insight into the behavior of users
 and processes, it is recommended that the delegation of audit
 review rights be performed with caution.
16.4.1. Live Monitoring Using Audit Pipes
Audit pipes are cloning pseudo-devices which allow
	applications to tap the live audit record stream. This is
	primarily of interest to authors of intrusion detection and
	system monitoring applications. However, the audit pipe
	device is a convenient way for the administrator to allow live
	monitoring without running into problems with audit trail file
	ownership or log rotation interrupting the event stream. To
	track the live audit event stream:
praudit /dev/auditpipe
By default, audit pipe device nodes are accessible only to
	the root user. To
	make them accessible to the members of the audit group, add a
	devfs rule to
	/etc/devfs.rules:
add path 'auditpipe*' mode 0440 group audit
See devfs.rules(5) for more information on
	configuring the devfs file system.
Warning:
It is easy to produce audit event feedback cycles, in
	 which the viewing of each audit event results in the
	 generation of more audit events. For example, if all
	 network I/O is audited, and
	 praudit is run from an
	 SSH session, a continuous stream of audit
	 events will be generated at a high rate, as each event being
	 printed will generate another event. For this reason, it is
	 advisable to run praudit on an audit pipe
	 device from sessions without fine-grained
	 I/O auditing.

16.4.2. Rotating and Compressing Audit Trail Files
Audit trails are written to by the kernel and
	managed by the audit daemon, auditd(8).
	Administrators should not attempt to use
	newsyslog.conf(5) or other tools to directly rotate
	audit logs. Instead, audit should
	be used to shut down auditing, reconfigure the audit system,
	and perform log rotation. The following command causes the
	audit daemon to create a new audit log and signal the kernel
	to switch to using the new log. The old log will be
	terminated and renamed, at which point it may then be
	manipulated by the administrator:
audit -n
If auditd(8) is not currently running, this command
	will fail and an error message will be produced.
Adding the following line to
	/etc/crontab will schedule this rotation
	every twelve hours:
0 */12 * * * root /usr/sbin/audit -n
The change will take effect once
	/etc/crontab is saved.
Automatic rotation of the audit trail file based on file
	size is possible using filesz in
	audit_control as described in Section 16.3.2.1, “The audit_control File”.
As audit trail files can become very large, it is often
	desirable to compress or otherwise archive trails once they
	have been closed by the audit daemon. The
	audit_warn script can be used to perform
	customized operations for a variety of audit-related events,
	including the clean termination of audit trails when they are
	rotated. For example, the following may be added to
	/etc/security/audit_warn to compress
	audit trails on close:
#
Compress audit trail files on close.
#
if ["$1" = closefile]; then
 gzip -9 $2
fi
Other archiving activities might include copying trail
	files to a centralized server, deleting old trail files, or
	reducing the audit trail to remove unneeded records. This
	script will be run only when audit trail files are cleanly
	terminated, so will not be run on trails left unterminated
	following an improper shutdown.
23.5. Updating FreeBSD from Source
Updating FreeBSD by compiling from source offers several
 advantages over binary updates. Code can be built with options
 to take advantage of specific hardware. Parts of the base
 system can be built with non-default settings, or left out
 entirely where they are not needed or desired. The build
 process takes longer to update a system than just installing
 binary updates, but allows complete customization to produce
 a tailored version of FreeBSD.
23.5.1. Quick Start
This is a quick reference for the typical steps used to
	update FreeBSD by building from source. Later sections describe
	the process in more detail.
	Update and Build
svnlite update /usr/src [image: 1]
check /usr/src/UPDATING [image: 2]
cd /usr/src [image: 3]
make -j4 buildworld [image: 4]
make -j4 kernel [image: 5]
shutdown -r now [image: 6]
cd /usr/src [image: 7]
make installworld [image: 8]
mergemaster -Ui [image: 9]
shutdown -r now [image: 10]
	[image: 1]
	Get the latest version of the source. See
		Section 23.5.3, “Updating the Source” for
		more information on obtaining and updating
		source.

	[image: 2]
	Check /usr/src/UPDATING
		for any manual steps required before or after building
		from source.

	[image: 3]
	Go to the source directory.

	[image: 4]
	Compile the world, everything except the
		kernel.

	[image: 5]
	Compile and install the kernel. This is
		equivalent to make buildkernel
		 installkernel.

	[image: 6]
	Reboot the system to the new kernel.

	[image: 7]
	Go to the source directory.

	[image: 8]
	Install the world.

	[image: 9]
	Update and merge configuration files in
		/etc/.

	[image: 10]
	Restart the system to use the newly-built world
		and kernel.

23.5.2. Preparing for a Source Update
Read /usr/src/UPDATING. Any manual
	steps that must be performed before or after an update are
	described in this file.
23.5.3. Updating the Source
FreeBSD source code is located in
	/usr/src/. The preferred method of
	updating this source is through the
	Subversion version control system.
	Verify that the source code is under version control:
svnlite info /usr/src
Path: /usr/src
Working Copy Root Path: /usr/src
...
This indicates that /usr/src/
	is under version control and can be updated with
	svnlite(1):
svnlite update /usr/src
The update process can take some time if the directory has
	not been updated recently. After it finishes, the source code
	is up to date and the build process described in the next
	section can begin.
Obtaining the Source:
If the output says
	 '/usr/src' is not a working copy, the
	 files there are missing or were installed with a different
	 method. A new checkout of the source is required.
Table 23.1. FreeBSD Versions and Repository Paths
	uname -r Output	Repository Path	Description
	X.Y-RELEASE	base/releng/X.Y	The Release version plus only critical security
		 and bug fix patches. This branch is recommended
		 for most users.
	X.Y-STABLE	base/stable/X	
		 The Release version plus all additional
		 development on that branch.
		 STABLE refers to the
		 Applications Binary Interface
		 (ABI) not changing, so software
		 compiled for earlier versions still runs. For
		 example, software compiled to run on FreeBSD 10.1
		 will still run on FreeBSD 10-STABLE compiled
		 later.

		 STABLE branches occasionally have bugs or
		 incompatibilities which might affect users,
		 although these are typically fixed quickly.

		
	X-CURRENT	base/head/	The latest unreleased development version of
		 FreeBSD. The CURRENT branch can have major bugs or
		 incompatibilities and is recommended only for
		 advanced users.

Determine which version of FreeBSD is being used with
	 uname(1):
uname -r
10.3-RELEASE
Based on
	 Table 23.1, “FreeBSD Versions and Repository Paths”, the
	 source used to update 10.3-RELEASE has
	 a repository path of base/releng/10.3.
	 That path is used when checking out the source:
mv /usr/src /usr/src.bak [image: 1]
svnlite checkout https://svn.freebsd.org/base/releng/10.3 /usr/src [image: 2]
	[image: 1]
	Move the old directory out of the way. If there are
	 no local modifications in this directory, it can be
	 deleted.

	[image: 2]
	The path from
	 Table 23.1, “FreeBSD Versions and Repository Paths” is
	 added to the repository URL. The
	 third parameter is the destination directory for the
	 source code on the local system.

23.5.4. Building from Source
The world, or all
	of the operating system except the kernel, is compiled. This
	is done first to provide up-to-date tools to build the kernel.
	Then the kernel itself is built:
cd /usr/src
make buildworld
make buildkernel
The compiled code is written to
	/usr/obj.
These are the basic steps. Additional options to control
	the build are described below.
23.5.4.1. Performing a Clean Build
Some versions of the FreeBSD build system leave
	 previously-compiled code in the temporary object directory,
	 /usr/obj. This can speed up later
	 builds by avoiding recompiling code that has not changed.
	 To force a clean rebuild of everything, use
	 cleanworld before starting
	 a build:
make cleanworld
23.5.4.2. Setting the Number of Jobs
Increasing the number of build jobs on multi-core
	 processors can improve build speed. Determine the number of
	 cores with sysctl hw.ncpu. Processors
	 vary, as do the build systems used with different versions
	 of FreeBSD, so testing is the only sure method to tell how a
	 different number of jobs affects the build speed. For a
	 starting point, consider values between half and double the
	 number of cores. The number of jobs is specified with
	 -j.
Example 23.1. Increasing the Number of Build Jobs
Building the world and kernel with four jobs:
make -j4 buildworld buildkernel

23.5.4.3. Building Only the Kernel
A buildworld must be
	 completed if the source code has changed. After that, a
	 buildkernel to build a kernel can
	 be run at any time. To build just the kernel:
cd /usr/src
make buildkernel
23.5.4.4. Building a Custom Kernel
The standard FreeBSD kernel is based on a
	 kernel config file called
	 GENERIC. The
	 GENERIC kernel includes the most
	 commonly-needed device drivers and options. Sometimes it
	 is useful or necessary to build a custom kernel, adding or
	 removing device drivers or options to fit a specific
	 need.
For example, someone developing a small embedded
	 computer with severely limited RAM could
	 remove unneeded device drivers or options to make the kernel
	 slightly smaller.
Kernel config files are located in
	 /usr/src/sys/arch/conf/,
	 where arch is the output from
	 uname -m. On most computers, that is
	 amd64, giving a config file directory of
	 /usr/src/sys/amd64/conf/.
Tip:
/usr/src can be deleted or
	 recreated, so it is preferable to keep custom kernel
	 config files in a separate directory, like
	 /root. Link the kernel config file
	 into the conf directory. If that
	 directory is deleted or overwritten, the kernel config
	 can be re-linked into the new one.

A custom config file can be created by copying the
	 GENERIC config file. In this example,
	 the new custom kernel is for a storage server, so is named
	 STORAGESERVER:
cp /usr/src/sys/amd64/conf/GENERIC /root/STORAGESERVER
cd /usr/src/sys/amd64/conf
ln -s /root/STORAGESERVER .
/root/STORAGESERVER is then edited,
	 adding or removing devices or options as shown in
	 config(5).
The custom kernel is built by setting
	 KERNCONF to the kernel config file on the
	 command line:
make buildkernel KERNCONF=STORAGESERVER
23.5.5. Installing the Compiled Code
After the buildworld and
	buildkernel steps have been
	completed, the new kernel and world are installed:
cd /usr/src
make installkernel
shutdown -r now
cd /usr/src
make installworld
shutdown -r now
If a custom kernel was built, KERNCONF
	must also be set to use the new custom kernel:
cd /usr/src
make installkernel KERNCONF=STORAGESERVER
shutdown -r now
cd /usr/src
make installworld
shutdown -r now
23.5.6. Completing the Update
A few final tasks complete the update. Any modified
	configuration files are merged with the new versions, outdated
	libraries are located and removed, then the system is
	restarted.
23.5.6.1. Merging Configuration Files with
	 mergemaster(8)
mergemaster(8) provides an easy
	 way to merge changes that have been made to system
	 configuration files with new versions of those files.
With -Ui, mergemaster(8)
	 automatically updates files that have not been user-modified
	 and installs new files that are not already present:
mergemaster -Ui
If a file must be manually merged, an interactive
	 display allows the user to choose which portions of the
	 files are kept. See mergemaster(8) for more
	 information.
23.5.6.2. Checking for Outdated Files and Libraries
Some obsolete files or directories can remain after an
	 update. These files can be located:
make check-old
and deleted:
make delete-old
Some obsolete libraries can also remain. These can be
	 detected with:
make check-old-libs
and deleted with
make delete-old-libs
Programs which were still using those old libraries will
	 stop working when the library has been deleted. These
	 programs must be rebuilt or replaced after deleting the old
	 libraries.
Tip:
When all the old files or directories are known to be
	 safe to delete, pressing y and
	 Enter to delete each file can be avoided
	 by setting BATCH_DELETE_OLD_FILES in
	 the command. For example:
make BATCH_DELETE_OLD_FILES=yes delete-old-libs

23.5.6.3. Restarting After the Update
The last step after updating is to restart the computer
	 so all the changes take effect:
shutdown -r now
21.6. FreeBSD as a Host with VirtualBox™
VirtualBox™ is an actively
 developed, complete virtualization package, that is available
 for most operating systems including Windows®, Mac OS®, Linux®
 and FreeBSD. It is equally capable of running Windows® or
 UNIX®-like guests. It is released as open source software, but
 with closed-source components available in a separate extension
 pack. These components include support for USB 2.0 devices.
 More information may be found on the “Downloads”
	page of the VirtualBox™
	wiki. Currently, these extensions are not available
 for FreeBSD.
21.6.1. Installing VirtualBox™
VirtualBox™ is available as a
	FreeBSD package or port in
	emulators/virtualbox-ose. The port can be
	installed using these commands:
cd /usr/ports/emulators/virtualbox-ose
make install clean
One useful option in the port's configuration menu is the
	GuestAdditions suite of programs. These
	provide a number of useful features in guest operating
	systems, like mouse pointer integration (allowing the mouse to
	be shared between host and guest without the need to press a
	special keyboard shortcut to switch) and faster video
	rendering, especially in Windows® guests. The guest
	additions are available in the Devices
	menu, after the installation of the guest is finished.
A few configuration changes are needed before
	VirtualBox™ is started for the
	first time. The port installs a kernel module in
	/boot/modules which
	must be loaded into the running kernel:
kldload vboxdrv
To ensure the module is always loaded after a reboot,
	add this line to
	/boot/loader.conf:
vboxdrv_load="YES"
To use the kernel modules that allow bridged or host-only
	networking, add this line to
	/etc/rc.conf and reboot the
	computer:
vboxnet_enable="YES"
The vboxusers
	group is created during installation of
	VirtualBox™. All users that need
	access to VirtualBox™ will have to
	be added as members of this group. pw can
	be used to add new members:
pw groupmod vboxusers -m yourusername
The default permissions for
	/dev/vboxnetctl are restrictive and need
	to be changed for bridged networking:
chown root:vboxusers /dev/vboxnetctl
chmod 0660 /dev/vboxnetctl
To make this permissions change permanent, add these
	lines to /etc/devfs.conf:
own vboxnetctl root:vboxusers
perm vboxnetctl 0660
To launch VirtualBox™,
	type from a Xorg session:
% VirtualBox
For more information on configuring and using
	VirtualBox™, refer to the
	official
	 website. For FreeBSD-specific information and
	troubleshooting instructions, refer to the relevant
	 page in the FreeBSD wiki.
21.6.2. VirtualBox™ USB Support
VirtualBox™ can be configured
	to pass USB devices through to the guest
	operating system. The host controller of the OSE version is
	limited to emulating USB 1.1 devices until
	the extension pack supporting USB 2.0 and
	3.0 devices becomes available on FreeBSD.
For VirtualBox™ to be aware of
	USB devices attached to the machine, the
	user needs to be a member of the operator group.
pw groupmod operator -m yourusername
Then, add the following to
 /etc/devfs.rules, or create this file if
 it does not exist yet:
[system=10]
add path 'usb/*' mode 0660 group operator
To load these new rules, add the following to
 /etc/rc.conf:
devfs_system_ruleset="system"
Then, restart devfs:
service devfs restart
Restart the login session and
	VirtualBox™ for these changes to
	take effect, and create USB filters as
	necessary.
21.6.3. VirtualBox™ Host
	DVD/CD Access
Access to the host
	DVD/CD drives from
	guests is achieved through the sharing of the physical drives.
	Within VirtualBox™, this is set up from the Storage window in
	the Settings of the virtual machine. If needed, create an
	empty IDE
	CD/DVD device first.
	Then choose the Host Drive from the popup menu for the virtual
	CD/DVD drive selection.
	A checkbox labeled Passthrough will appear.
	This allows the virtual machine to use the hardware directly.
	For example, audio CDs or the burner will
	only function if this option is selected.
HAL needs to run for
	VirtualBox™
	DVD/CD functions to
	work, so enable it in /etc/rc.conf and
	start it if it is not already running:
hald_enable="YES"
service hald start
In order for users to be able to use
	VirtualBox™
	DVD/CD functions, they
	need access to /dev/xpt0,
	/dev/cdN, and
	/dev/passN.
	This is usually achieved by making the user a member of
	operator.
	Permissions to these devices have to be corrected by adding
	these lines to /etc/devfs.conf:
perm cd* 0660
perm xpt0 0660
perm pass* 0660
service devfs restart
14.6. Managing Jails with
	ezjail
Originally contributed by Warren Block. Creating and managing multiple jails can quickly become
 tedious and error-prone. Dirk Engling's
 ezjail automates and greatly
 simplifies many jail tasks. A basejail is
 created as a template. Additional jails use
 mount_nullfs(8) to share many of the basejail directories
 without using additional disk space. Each additional jail takes
 only a few megabytes of disk space before applications are
 installed. Upgrading the copy of the userland in the basejail
 automatically upgrades all of the other jails.
Additional benefits and features are described in detail on
 the ezjail web site, https://erdgeist.org/arts/software/ezjail/.
14.6.1. Installing ezjail
Installing ezjail consists of
	adding a loopback interface for use in jails, installing the
	port or package, and enabling the service.
	To keep jail loopback traffic off the host's loopback
	 network interface lo0, a second
	 loopback interface is created by adding an entry to
	 /etc/rc.conf:
cloned_interfaces="lo1"
The second loopback interface lo1
	 will be created when the system starts. It can also be
	 created manually without a restart:
service netif cloneup
Created clone interfaces: lo1.
Jails can be allowed to use aliases of this secondary
	 loopback interface without interfering with the
	 host.
Inside a jail, access to the loopback address
	 127.0.0.1 is
	 redirected to the first IP address
	 assigned to the jail. To make the jail loopback
	 correspond with the new lo1 interface,
	 that interface must be specified first in the list of
	 interfaces and IP addresses given when
	 creating a new jail.
Give each jail a unique loopback address in the
	 127.0.0.0/8 netblock.

	Install
	 sysutils/ezjail:
cd /usr/ports/sysutils/ezjail
make install clean

	Enable ezjail by adding
	 this line to /etc/rc.conf:
ezjail_enable="YES"

	The service will automatically start on system boot.
	 It can be started immediately for the current
	 session:
service ezjail start

14.6.2. Initial Setup
With ezjail installed, the
	basejail directory structure can be created and populated.
	This step is only needed once on the jail host
	computer.
In both of these examples, -p causes the
	ports tree to be retrieved with portsnap(8) into the
	basejail. That single copy of the ports directory will be
	shared by all the jails. Using a separate copy of the ports
	directory for jails isolates them from the host. The
	ezjail FAQ
	explains in more detail: http://erdgeist.org/arts/software/ezjail/#FAQ.
	
	 	To Populate the Jail with FreeBSD-RELEASE
For a basejail based on the FreeBSD RELEASE matching
		that of the host computer, use
		install. For example, on a host
		computer running FreeBSD 10-STABLE, the latest
		RELEASE version of FreeBSD -10 will be installed in
		the jail):
ezjail-admin install -p

	 	To Populate the Jail with
		installworld
The basejail can be installed from binaries
		created by buildworld on
		the host with
		ezjail-admin update.
In this example, FreeBSD 10-STABLE has been
		built from source. The jail directories are created.
		Then installworld is
		executed, installing the host's
		/usr/obj into the
		basejail.
ezjail-admin update -i -p
The host's /usr/src is used
		by default. A different source directory on the host
		can be specified with -s and a path,
		or set with ezjail_sourcetree in
		/usr/local/etc/ezjail.conf.

	

Tip:
The basejail's ports tree is shared by other jails.
	 However, downloaded distfiles are stored in the jail that
	 downloaded them. By default, these files are stored in
	 /var/ports/distfiles within each
	 jail. /var/ports inside each jail is
	 also used as a work directory when building ports.

Tip:
The FTP protocol is used by default
	 to download packages for the installation of the basejail.
	 Firewall or proxy configurations can prevent or interfere
	 with FTP transfers. The
	 HTTP protocol works differently and
	 avoids these problems. It can be chosen by specifying a
	 full URL for a particular download mirror
	 in /usr/local/etc/ezjail.conf:
ezjail_ftphost=http://ftp.FreeBSD.org
See Section A.2, “FTP Sites” for a list of
	 sites.

14.6.3. Creating and Starting a New Jail
New jails are created with
	ezjail-admin create. In these examples,
	the lo1 loopback interface is used as
	described above.
Procedure 14.1. Create and Start a New Jail
	Create the jail, specifying a name and the loopback
	 and network interfaces to use, along with their
	 IP addresses. In this example, the
	 jail is named dnsjail.
ezjail-admin create dnsjail 'lo1|127.0.1.1,em0|192.168.1.50'
Tip:
Most network services run in jails without
	 problems. A few network services, most notably
	 ping(8), use
	 raw network sockets. In jails, raw
	 network sockets are disabled by default for security.
	 Services that require them will not work.
Occasionally, a jail genuinely needs raw sockets.
	 For example, network monitoring applications often use
	 ping(8) to check the availability of other
	 computers. When raw network sockets are actually needed
	 in a jail, they can be enabled by editing the
	 ezjail
	 configuration file for the individual jail,
	 /usr/local/etc/ezjail/jailname.
	 Modify the parameters
	 entry:
export jail_jailname_parameters="allow.raw_sockets=1"
Do not enable raw network sockets unless services in
	 the jail actually require them.

	Start the jail:
ezjail-admin start dnsjail

	Use a console on the jail:
ezjail-admin console dnsjail

The jail is operating and additional configuration can be
	completed. Typical settings added at this point
	include:
	Set the
	 root
	 Password
Connect to the jail and set the
	 root user's
	 password:
ezjail-admin console dnsjail
passwd
Changing local password for root
New Password:
Retype New Password:

	Time Zone Configuration
The jail's time zone can be set with tzsetup(8).
	 To avoid spurious error messages, the adjkerntz(8)
	 entry in /etc/crontab can be
	 commented or removed. This job attempts to update the
	 computer's hardware clock with time zone changes, but
	 jails are not allowed to access that hardware.

	DNS Servers
Enter domain name server lines in
	 /etc/resolv.conf so
	 DNS works in the jail.

	Edit /etc/hosts
Change the address and add the jail name to the
	 localhost entries in
	 /etc/hosts.

	Configure /etc/rc.conf
Enter configuration settings in
	 /etc/rc.conf. This is much like
	 configuring a full computer. The host name and
	 IP address are not set here. Those
	 values are already provided by the jail
	 configuration.

With the jail configured, the applications for which the
	jail was created can be installed.
Tip:
Some ports must be built with special options to be used
	 in a jail. For example, both of the network monitoring
	 plugin packages
	 net-mgmt/nagios-plugins and
	 net-mgmt/monitoring-plugins
	 have a JAIL option which must be enabled
	 for them to work correctly inside a jail.

14.6.4. Updating Jails
14.6.4.1. Updating the Operating System
Because the basejail's copy of the userland is shared by
	 the other jails, updating the basejail automatically updates
	 all of the other jails. Either source or binary updates can
	 be used.
To build the world from source on the host, then
	 install it in the basejail, use:
ezjail-admin update -b
If the world has already been compiled on the host,
	 install it in the basejail with:
ezjail-admin update -i
Binary updates use freebsd-update(8). These
	 updates have the same limitations as if
	 freebsd-update(8) were being run directly. The most
	 important one is that only -RELEASE versions of FreeBSD are
	 available with this method.
Update the basejail to the latest patched release of
	 the version of FreeBSD on the host. For example, updating from
	 RELEASE-p1 to RELEASE-p2.
ezjail-admin update -u
To upgrade the basejail to a new version, first
	 upgrade the host system as described in Section 23.2.3, “Performing Major and Minor Version Upgrades”. Once the host has
	 been upgraded and rebooted, the basejail can then be
	 upgraded. freebsd-update(8) has no way of determining
	 which version is currently installed in the basejail, so the
	 original version must be specified. Use file(1) to
	 determine the original version in the basejail:
file /usr/jails/basejail/bin/sh
/usr/jails/basejail/bin/sh: ELF 64-bit LSB executable, x86-64, version 1 (FreeBSD), dynamically linked (uses shared libs), for FreeBSD 9.3, stripped
Now use this information to perform the upgrade from
	 9.3-RELEASE to the current version of
	 the host system:
ezjail-admin update -U -s 9.3-RELEASE
After updating the basejail, mergemaster(8) must
	 be run to update each jail's configuration files.
How to use mergemaster(8) depends on the purpose
	 and trustworthiness of a jail. If a jail's services or
	 users are not trusted, then mergemaster(8) should only
	 be run from within that jail:
Example 14.1. mergemaster(8) on Untrusted Jail
Delete the link from the jail's
	 /usr/src into the basejail and
	 create a new /usr/src in the jail
	 as a mountpoint. Mount the host computer's
	 /usr/src read-only on the jail's
	 new /usr/src mountpoint:
rm /usr/jails/jailname/usr/src
mkdir /usr/jails/jailname/usr/src
mount -t nullfs -o ro /usr/src /usr/jails/jailname/usr/src
Get a console in the jail:
ezjail-admin console jailname
Inside the jail, run mergemaster.
	 Then exit the jail console:
cd /usr/src
mergemaster -U
exit
Finally, unmount the jail's
	 /usr/src:
umount /usr/jails/jailname/usr/src

Example 14.2. mergemaster(8) on Trusted Jail
If the users and services in a jail are trusted,
	 mergemaster(8) can be run from the host:
mergemaster -U -D /usr/jails/jailname

Tip:
After a major version update it is recommended by
	 sysutils/ezjail to make sure your
	 pkg is of the correct version.
	 Therefore enter:
pkg-static upgrade -f pkg
to upgrade or downgrade to the appropriate
	 version.

14.6.4.2. Updating Ports
The ports tree in the basejail is shared by the other
	 jails. Updating that copy of the ports tree gives the other
	 jails the updated version also.
The basejail ports tree is updated with
	 portsnap(8):
ezjail-admin update -P
14.6.5. Controlling Jails
14.6.5.1. Stopping and Starting Jails
ezjail automatically starts
	 jails when the computer is started. Jails can be manually
	 stopped and restarted with stop and
	 start:
ezjail-admin stop sambajail
Stopping jails: sambajail.
By default, jails are started automatically when the
	 host computer starts. Autostarting can be disabled
	 with config:
ezjail-admin config -r norun seldomjail
This takes effect the next time the host computer is
	 started. A jail that is already running will not be
	 stopped.
Enabling autostart is very similar:
ezjail-admin config -r run oftenjail
14.6.5.2. Archiving and Restoring Jails
Use archive to create a
	 .tar.gz archive of a jail. The file
	 name is composed from the name of the jail and the current
	 date. Archive files are written to the archive directory,
	 /usr/jails/ezjail_archives. A
	 different archive directory can be chosen by setting
	 ezjail_archivedir in the configuration
	 file.
The archive file can be copied elsewhere as a backup, or
	 an existing jail can be restored from it with
	 restore. A new jail can be created from
	 the archive, providing a convenient way to clone existing
	 jails.
Stop and archive a jail named
	 wwwserver:
ezjail-admin stop wwwserver
Stopping jails: wwwserver.
ezjail-admin archive wwwserver
ls /usr/jails/ezjail-archives/
wwwserver-201407271153.13.tar.gz
Create a new jail named
	 wwwserver-clone from the archive created
	 in the previous step. Use the em1
	 interface and assign a new IP address to
	 avoid conflict with the original:
ezjail-admin create -a /usr/jails/ezjail_archives/wwwserver-201407271153.13.tar.gz wwwserver-clone 'lo1|127.0.3.1,em1|192.168.1.51'
14.6.6. Full Example: BIND in a
	Jail
Putting the BIND
	DNS server in a jail improves security by
	isolating it. This example creates a simple caching-only name
	server.
	The jail will be called
	 dns1.

	The jail will use IP address
	 192.168.1.240 on the host's
	 re0 interface.

	The upstream ISP's DNS servers are
	 at 10.0.0.62 and
	 10.0.0.61.

	The basejail has already been created and a ports tree
	 installed as shown in
	 Section 14.6.2, “Initial Setup”.

Example 14.3. Running BIND in a Jail
Create a cloned loopback interface by adding a line to
	 /etc/rc.conf:
cloned_interfaces="lo1"
Immediately create the new loopback interface:
service netif cloneup
Created clone interfaces: lo1.
Create the jail:
ezjail-admin create dns1 'lo1|127.0.2.1,re0|192.168.1.240'
Start the jail, connect to a console running on it, and
	 perform some basic configuration:
ezjail-admin start dns1
ezjail-admin console dns1
passwd
Changing local password for root
New Password:
Retype New Password:
tzsetup
sed -i .bak -e '/adjkerntz/ s/^/#/' /etc/crontab
sed -i .bak -e 's/127.0.0.1/127.0.2.1/g; s/localhost.my.domain/dns1.my.domain dns1/' /etc/hosts
Temporarily set the upstream DNS
	 servers in /etc/resolv.conf so ports
	 can be downloaded:
nameserver 10.0.0.62
nameserver 10.0.0.61
Still using the jail console, install
	 dns/bind99.
make -C /usr/ports/dns/bind99 install clean
Configure the name server by editing
	 /usr/local/etc/namedb/named.conf.
Create an Access Control List (ACL)
	 of addresses and networks that are permitted to send
	 DNS queries to this name server. This
	 section is added just before the options
	 section already in the file:
...
// or cause huge amounts of useless Internet traffic.

acl "trusted" {
	192.168.1.0/24;
	localhost;
	localnets;
};

options {
...
Use the jail IP address in the
	 listen-on setting to accept
	 DNS queries from other computers on the
	 network:
	listen-on	{ 192.168.1.240; };
A simple caching-only DNS name server
	 is created by changing the forwarders
	 section. The original file contains:
/*
	forwarders {
		127.0.0.1;
	};
*/
Uncomment the section by removing the
	 /* and */ lines.
	 Enter the IP addresses of the upstream
	 DNS servers. Immediately after the
	 forwarders section, add references to the
	 trusted ACL defined
	 earlier:
	forwarders {
		10.0.0.62;
		10.0.0.61;
	};

	allow-query { any; };
	allow-recursion { trusted; };
	allow-query-cache { trusted; };
Enable the service in
	 /etc/rc.conf:
named_enable="YES"
Start and test the name server:
service named start
wrote key file "/usr/local/etc/namedb/rndc.key"
Starting named.
/usr/local/bin/dig @192.168.1.240 freebsd.org
A response that includes
;; Got answer;
shows that the new DNS server is
	 working. A long delay followed by a response
	 including
;; connection timed out; no servers could be reached
shows a problem. Check the configuration settings and
	 make sure any local firewalls allow the new
	 DNS access to the upstream
	 DNS servers.
The new DNS server can use itself for
	 local name resolution, just like other local computers. Set
	 the address of the DNS server in the
	 client computer's
	 /etc/resolv.conf:
nameserver 192.168.1.240
A local DHCP server can be configured
	 to provide this address for a local DNS
	 server, providing automatic configuration on
	 DHCP clients.

8.3. Finding the System Hardware
Before editing the kernel configuration file, it is
 recommended to perform an inventory of the machine's hardware.
 On a dual-boot system, the inventory can be created from the
 other operating system. For example, Microsoft®'s
 Device Manager contains information
 about installed devices.
Note:
Some versions of Microsoft® Windows® have a
	System icon which can be used to
	access Device Manager.

If FreeBSD is the only installed operating system, use
 dmesg(8) to determine the hardware that was found and
 listed during the boot probe. Most device drivers on FreeBSD have
 a manual page which lists the hardware supported by that driver.
 For example, the following lines indicate that the psm(4)
 driver found a mouse:
psm0: <PS/2 Mouse> irq 12 on atkbdc0
psm0: [GIANT-LOCKED]
psm0: [ITHREAD]
psm0: model Generic PS/2 mouse, device ID 0
Since this hardware exists, this driver should not be
 removed from a custom kernel configuration file.
If the output of dmesg does not display
 the results of the boot probe output, instead read the contents
 of /var/run/dmesg.boot.
Another tool for finding hardware is pciconf(8), which
 provides more verbose output. For example:
% pciconf -lv
ath0@pci0:3:0:0: class=0x020000 card=0x058a1014 chip=0x1014168c rev=0x01 hdr=0x00
 vendor = 'Atheros Communications Inc.'
 device = 'AR5212 Atheros AR5212 802.11abg wireless'
 class = network
 subclass = ethernet
This output shows that the ath driver
 located a wireless Ethernet device.
The -k flag of man(1) can be used to
 provide useful information. For example, it can be
 used to display a list of manual pages which contain a
 particular device brand or name:
man -k Atheros
ath(4) - Atheros IEEE 802.11 wireless network driver
ath_hal(4) - Atheros Hardware Access Layer (HAL)
Once the hardware inventory list is created, refer to it
 to ensure that drivers for installed hardware are not removed
 as the custom kernel configuration is edited.
FreeBSD is a registered trademark of
 the FreeBSD Foundation.
3Com and HomeConnect are registered
 trademarks of 3Com Corporation.
3ware is a registered
 trademark of 3ware Inc.
ARM is a registered trademark of ARM
 Limited.
Adaptec is a registered trademark of
 Adaptec, Inc.
Adobe, Acrobat, Acrobat Reader, Flash and
 PostScript are either registered trademarks or trademarks of Adobe
 Systems Incorporated in the United States and/or other
 countries.
Apple, AirPort, FireWire,
 iMac, iPhone, iPad,
 Mac, Macintosh, Mac OS,
 Quicktime, and TrueType are trademarks of Apple Inc.,
 registered in the U.S. and other countries.
Android
 is a trademark of Google Inc.
Heidelberg, Helvetica,
 Palatino, and Times Roman are either registered trademarks or
 trademarks of Heidelberger Druckmaschinen AG in the U.S. and other
 countries.
IBM, AIX, OS/2,
 PowerPC, PS/2, S/390, and ThinkPad are
 trademarks of International Business Machines Corporation in the
 United States, other countries, or both.
IEEE, POSIX, and 802 are registered
 trademarks of Institute of Electrical and Electronics Engineers,
 Inc. in the United States.
Intel, Celeron, Centrino, Core, EtherExpress, i386,
 i486, Itanium, Pentium, and Xeon are trademarks or registered
 trademarks of Intel Corporation or its subsidiaries in the United
 States and other countries.
Intuit and Quicken are registered
 trademarks and/or registered service marks of Intuit Inc., or one of
 its subsidiaries, in the United States and other countries.
Linux is a registered trademark of
 Linus Torvalds.
LSI Logic, AcceleRAID, eXtremeRAID,
 MegaRAID and Mylex are trademarks or registered trademarks of LSI
 Logic Corp.
Microsoft, IntelliMouse, MS-DOS,
 Outlook, Windows, Windows Media and Windows NT are either
 registered trademarks or trademarks of Microsoft Corporation in the
 United States and/or other countries.
Motif, OSF/1, and UNIX are
 registered trademarks and IT DialTone and The Open Group are
 trademarks of The Open Group in the United States and other
 countries.
Oracle is a registered trademark
 of Oracle Corporation.
RealNetworks, RealPlayer, and
 RealAudio are the registered trademarks of RealNetworks,
 Inc.
Red Hat, RPM, are trademarks or
 registered trademarks of Red Hat, Inc. in the United States and
 other countries.
Sun, Sun Microsystems, Java, Java
 Virtual Machine, JDK, JRE, JSP, JVM, Netra, OpenJDK,
 Solaris, StarOffice, SunOS
 and VirtualBox are trademarks or registered trademarks of
 Sun Microsystems, Inc. in the United States and other countries.
MATLAB is a registered trademark
 of The MathWorks, Inc.
SpeedTouch is a trademark of
 Thomson.
VMware is a trademark of VMware,
 Inc.
Mathematica is a registered
 trademark of Wolfram Research, Inc.
XFree86 is a trademark of The
 XFree86 Project, Inc.
Ogg Vorbis and Xiph.Org are trademarks
 of Xiph.Org.
Many of the designations used by
 manufacturers and sellers to distinguish their products are claimed
 as trademarks. Where those designations appear in this document,
 and the FreeBSD Project was aware of the trademark claim, the
 designations have been followed by the “™” or the
 “®” symbol.

8.6. If Something Goes Wrong
There are four categories of trouble that can occur when
 building a custom kernel:
	config fails
	If config fails, it will print the
	 line number that is incorrect. As an example, for the
	 following message, make sure that line 17 is typed
	 correctly by comparing it to GENERIC
	 or NOTES:
config: line 17: syntax error

	make fails
	If make fails, it is usually due to
	 an error in the kernel configuration file which is not
	 severe enough for config to catch.
	 Review the configuration, and if the problem is not
	 apparent, send an email to the FreeBSD general questions mailing list which
	 contains the kernel configuration file.

	The kernel does not boot
	If the new kernel does not boot or fails to recognize
	 devices, do not panic! Fortunately, FreeBSD has an excellent
	 mechanism for recovering from incompatible kernels.
	 Simply choose the kernel to boot from at the FreeBSD boot
	 loader. This can be accessed when the system boot menu
	 appears by selecting the “Escape to a loader
	 prompt” option. At the prompt, type
	 boot
	 kernel.old, or the
	 name of any other kernel that is known to boot
	 properly.
After booting with a good kernel, check over the
	 configuration file and try to build it again. One helpful
	 resource is /var/log/messages which
	 records the kernel messages from every successful boot.
	 Also, dmesg(8) will print the kernel messages from
	 the current boot.
Note:
When troubleshooting a kernel, make sure to keep
	 a copy of GENERIC, or some other
	 kernel that is known to work, as a different name that
	 will not get erased on the next build. This is
	 important because every time a new kernel is installed,
	 kernel.old is overwritten with the
	 last installed kernel, which may or may not be bootable.
	 As soon as possible, move the working kernel by renaming
	 the directory containing the good kernel:
mv /boot/kernel /boot/kernel.bad
mv /boot/kernel.good /boot/kernel

	The kernel works, but ps(1) does not
	If the kernel version differs from the one that the
	 system utilities have been built with, for example, a
	 kernel built from -CURRENT sources is installed on a
	 -RELEASE system, many system status commands like
	 ps(1) and vmstat(8) will not work. To fix this,
	 recompile and install a
	 world built with the same version of the source
	 tree as the kernel. It is never a good idea to use a
	 different version of the kernel than the rest of the
	 operating system.

9.3. Common Page Description Languages
Data sent to a printer must be in a language that the
 printer can understand. These languages are called Page
 Description Languages, or PDLs.
	ASCII
	Plain ASCII text is the simplest
	 way to send data to a printer. Characters correspond one
	 to one with what will be printed: an A
	 in the data prints an A on the page.
	 Very little formatting is available. There is no way to
	 select a font or proportional spacing. The forced
	 simplicity of plain ASCII means that
	 text can be printed straight from the computer with little
	 or no encoding or translation. The printed output
	 corresponds directly with what was sent.
Some inexpensive printers cannot print plain
	 ASCII text. This makes them more
	 difficult to set up, but it is usually still
	 possible.

	PostScript®
	PostScript® is almost the opposite of
	 ASCII. Rather than simple text, a
	 PostScript® program is a set of instructions that draw
	 the final document. Different fonts and graphics can be
	 used. However, this power comes at a price. The program
	 that draws the page must be written. Usually this program
	 is generated by application software, so the process is
	 invisible to the user.
Inexpensive printers sometimes leave out PostScript®
	 compatibility as a cost-saving measure.

	PCL (Printer Command Language)
	PCL is an extension of
	 ASCII, adding escape sequences for
	 formatting, font selection, and printing graphics. Many
	 printers provide PCL5 support. Some
	 support the newer PCL6 or
	 PCLXL. These later versions are
	 supersets of PCL5 and can provide
	 faster printing.

	Host-Based
	Manufacturers can reduce the cost of a printer by
	 giving it a simple processor and very little memory.
	 These printers are not capable of printing plain text.
	 Instead, bitmaps of text and graphics are drawn by a
	 driver on the host computer and then sent to the printer.
	 These are called host-based
	 printers.
Communication between the driver and a host-based
	 printer is often through proprietary or undocumented
	 protocols, making them functional only on the most common
	 operating systems.

9.3.1. Converting PostScript® to Other
	PDLs
Many applications from the Ports Collection and FreeBSD
	utilities produce PostScript® output. This table shows
	the utilities available to convert that into other common
	PDLs:
Table 9.1. Output PDLs
	Output
		PDL	Generated By	Notes
	PCL or
		PCL5	print/ghostscript9-base	-sDEVICE=ljet4 for monochrome,
		-sDEVICE=cljet5 for color
	PCLXL or
		PCL6	print/ghostscript9-base	-sDEVICE=pxlmono for
		monochrome, -sDEVICE=pxlcolor for
		color
	ESC/P2	print/ghostscript9-base	-sDEVICE=uniprint
	XQX	print/foo2zjs	

9.3.2. Summary
For the easiest printing, choose a printer that supports
	PostScript®. Printers that support PCL
	are the next preferred. With
	print/ghostscript9-base, these
	printers can be used as if they understood PostScript®
	natively. Printers that support PostScript® or
	PCL directly almost always support direct
	printing of plain ASCII text files
	also.
Line-based printers like typical inkjets usually do not
	support PostScript® or PCL. They often
	can print plain ASCII text files.
	print/ghostscript9-base
	supports the PDLs used by some of these
	printers. However, printing an entire graphic-based page on
	these printers is often very slow due to the large amount of
	data to be transferred and printed.
Host-based printers are often more difficult to set up.
	Some cannot be used at all because of proprietary
	PDLs. Avoid these printers when
	possible.
Descriptions of many PDLs can be found
	at http://www.undocprint.org/formats/page_description_languages.
	The particular PDL used by various models
	of printers can be found at http://www.openprinting.org/printers.
13.4. TCP Wrapper
Written
	 by Tom Rhodes. TCP Wrapper is a host-based
 access control system which extends the abilities of Section 29.2, “The inetd
 Super-Server”. It can be configured to provide
 logging support, return messages, and connection restrictions
 for the server daemons under the control of
 inetd. Refer to tcpd(8) for
 more information about
 TCP Wrapper and its features.
TCP Wrapper should not be
 considered a replacement for a properly configured firewall.
 Instead, TCP Wrapper should be used
 in conjunction with a firewall and other security enhancements
 in order to provide another layer of protection in the
 implementation of a security policy.
13.4.1. Initial Configuration
To enable TCP Wrapper in FreeBSD,
	add the following lines to
	/etc/rc.conf:
inetd_enable="YES"
inetd_flags="-Ww"
Then, properly configure
	/etc/hosts.allow.
Note:
Unlike other implementations of
	 TCP Wrapper, the use of
	 hosts.deny is deprecated in FreeBSD. All
	 configuration options should be placed in
	 /etc/hosts.allow.

In the simplest configuration, daemon connection policies
	are set to either permit or block, depending on the options in
	/etc/hosts.allow. The default
	configuration in FreeBSD is to allow all connections to the
	daemons started with inetd.
Basic configuration usually takes the form of
	daemon : address : action, where
	daemon is the daemon which
	inetd started,
	address is a valid hostname,
	IP address, or an IPv6 address enclosed in
	brackets ([]), and action is either
	allow or deny.
	TCP Wrapper uses a first rule match
	semantic, meaning that the configuration file is scanned from
	the beginning for a matching rule. When a match is found, the
	rule is applied and the search process stops.
For example, to allow POP3 connections
	via the mail/qpopper daemon, the following
	lines should be appended to
	hosts.allow:
This line is required for POP3 connections:
qpopper : ALL : allow
Whenever this file is edited, restart
	inetd:
service inetd restart
13.4.2. Advanced Configuration
TCP Wrapper provides advanced
	options to allow more control over the way connections are
	handled. In some cases, it may be appropriate to return a
	comment to certain hosts or daemon connections. In other
	cases, a log entry should be recorded or an email sent to the
	administrator. Other situations may require the use of a
	service for local connections only. This is all possible
	through the use of configuration options known as wildcards,
	expansion characters, and external command execution.
Suppose that a situation occurs where a connection should
	be denied yet a reason should be sent to the host who
	attempted to establish that connection. That action is
	possible with twist. When a connection
	attempt is made, twist executes a shell
	command or script. An example exists in
	hosts.allow:
The rest of the daemons are protected.
ALL : ALL \
	: severity auth.info \
	: twist /bin/echo "You are not welcome to use %d from %h."
In this example, the message “You are not allowed to
	 use daemon name from
	 hostname.” will be
	returned for any daemon not configured in
	hosts.allow. This is useful for sending
	a reply back to the connection initiator right after the
	established connection is dropped. Any message returned
	must be wrapped in quote
	(") characters.
Warning:
It may be possible to launch a denial of service attack
	 on the server if an attacker floods these daemons with
	 connection requests.

Another possibility is to use spawn.
	Like twist, spawn implicitly
	denies the connection and may be used to run external shell
	commands or scripts. Unlike twist,
	spawn will not send a reply back to the host
	who established the connection. For example, consider the
	following configuration:
We do not allow connections from example.com:
ALL : .example.com \
	: spawn (/bin/echo %a from %h attempted to access %d >> \
	 /var/log/connections.log) \
	: deny
This will deny all connection attempts from *.example.com and log the
	hostname, IP address, and the daemon to
	which access was attempted to
	/var/log/connections.log. This example
	uses the substitution characters %a and
	%h. Refer to hosts_access(5) for the
	complete list.
To match every instance of a daemon, domain, or
	IP address, use ALL.
	Another wildcard is PARANOID which may be
	used to match any host which provides an IP
	address that may be forged because the IP
	address differs from its resolved hostname. In this example,
	all connection requests to Sendmail
	which have an IP address that varies from
	its hostname will be denied:
Block possibly spoofed requests to sendmail:
sendmail : PARANOID : deny
Caution:
Using the PARANOID wildcard will
	 result in denied connections if the client or server has a
	 broken DNS setup.

To learn more about wildcards and their associated
	functionality, refer to hosts_access(5).
Note:
When adding new configuration lines, make sure that any
	 unneeded entries for that daemon are commented out in
	 hosts.allow.

15.6. User Lock Down
This example considers a relatively small storage system
 with fewer than fifty users. Users will have login
 capabilities and are permitted to store data and access
 resources.
For this scenario, the mac_bsdextended(4) and
 mac_seeotheruids(4) policy modules could co-exist and block
 access to system objects while hiding user processes.
Begin by adding the following line to
 /boot/loader.conf:
mac_seeotheruids_load="YES"
The mac_bsdextended(4) security policy module may be
 activated by adding this line to
 /etc/rc.conf:
ugidfw_enable="YES"
Default rules stored in
 /etc/rc.bsdextended will be loaded at
 system initialization. However, the default entries may need
 modification. Since this machine is expected only to service
 users, everything may be left commented out except the last
 two lines in order to force the loading of user owned system
 objects by default.
Add the required users to this machine and reboot. For
 testing purposes, try logging in as a different user across
 two consoles. Run ps aux to see if processes
 of other users are visible. Verify that running ls(1) on
 another user's home directory fails.
Do not try to test with the root user unless the specific
 sysctls have been modified to block super
 user access.
Note:
When a new user is added, their mac_bsdextended(4)
	rule will not be in the ruleset list. To update the ruleset
	quickly, unload the security policy module and reload it again
	using kldunload(8) and kldload(8).

17.3. Resizing and Growing Disks
Originally contributed by Allan Jude. A disk's capacity can increase without any changes to the
 data already present. This happens commonly with virtual
 machines, when the virtual disk turns out to be too small and is
 enlarged. Sometimes a disk image is written to a
 USB memory stick, but does not use the full
 capacity. Here we describe how to resize or
 grow disk contents to take advantage of
 increased capacity.
Determine the device name of the disk to be resized by
 inspecting /var/run/dmesg.boot. In this
 example, there is only one SATA disk in the
 system, so the drive will appear as
 ada0.
List the partitions on the disk to see the current
 configuration:
gpart show ada0
=> 34 83886013 ada0 GPT (48G) [CORRUPT]
 34 128 1 freebsd-boot (64k)
 162 79691648 2 freebsd-ufs (38G)
 79691810 4194236 3 freebsd-swap (2G)
 83886046 1 - free - (512B)
Note:
If the disk was formatted with the
	GPT partitioning scheme, it may show
	as “corrupted” because the GPT
	backup partition table is no longer at the end of the
	drive. Fix the backup
	partition table with
	gpart:
gpart recover ada0
ada0 recovered

Now the additional space on the disk is available for
 use by a new partition, or an existing partition can be
 expanded:
gpart show ada0
=> 34 102399933 ada0 GPT (48G)
 34 128 1 freebsd-boot (64k)
 162 79691648 2 freebsd-ufs (38G)
 79691810 4194236 3 freebsd-swap (2G)
 83886046 18513921 - free - (8.8G)
Partitions can only be resized into contiguous free space.
 Here, the last partition on the disk is the swap partition, but
 the second partition is the one that needs to be resized. Swap
 partitions only contain temporary data, so it can safely be
 unmounted, deleted, and then recreate the third partition after
 resizing the second partition.
Disable the swap partition:
swapoff /dev/ada0p3
Delete the third partition, specified by the
 -i flag, from the disk
 ada0.

gpart delete -i 3 ada0
ada0p3 deleted
gpart show ada0
=> 34 102399933 ada0 GPT (48G)
 34 128 1 freebsd-boot (64k)
 162 79691648 2 freebsd-ufs (38G)
 79691810 22708157 - free - (10G)
Warning:
There is risk of data loss when modifying the partition
	table of a mounted file system. It is best to perform the
	following steps on an unmounted file system while running from
	a live CD-ROM or USB
	device. However, if absolutely necessary, a mounted file
	system can be resized after disabling GEOM safety
	features:
sysctl kern.geom.debugflags=16

Resize the partition, leaving room to recreate a swap
 partition of the desired size. The partition to resize is
 specified with -i, and the new desired size
 with -s. Optionally, alignment of the
 partition is controlled with -a. This only
 modifies the size of the partition. The file system in the
 partition will be expanded in a separate step.
gpart resize -i 2 -s 47G -a 4k ada0
ada0p2 resized
gpart show ada0
=> 34 102399933 ada0 GPT (48G)
 34 128 1 freebsd-boot (64k)
 162 98566144 2 freebsd-ufs (47G)
 98566306 3833661 - free - (1.8G)
Recreate the swap partition and activate it. If no size
 is specified with -s, all remaining space is
 used:
gpart add -t freebsd-swap -a 4k ada0
ada0p3 added
gpart show ada0
=> 34 102399933 ada0 GPT (48G)
 34 128 1 freebsd-boot (64k)
 162 98566144 2 freebsd-ufs (47G)
 98566306 3833661 3 freebsd-swap (1.8G)
swapon /dev/ada0p3
Grow the UFS file system to use the new
 capacity of the resized partition:
growfs /dev/ada0p2
Device is mounted read-write; resizing will result in temporary write suspension for /.
It's strongly recommended to make a backup before growing the file system.
OK to grow file system on /dev/ada0p2, mounted on /, from 38GB to 47GB? [Yes/No] Yes
super-block backups (for fsck -b #) at:
 80781312, 82063552, 83345792, 84628032, 85910272, 87192512, 88474752,
 89756992, 91039232, 92321472, 93603712, 94885952, 96168192, 97450432
If the file system is ZFS, the resize is
 triggered by running the online subcommand with
 -e:
zpool online -e zroot /dev/ada0p2
Both the partition and the file system on it have now been
 resized to use the newly-available disk space.
6.4. Document Viewers
Some new document formats have gained popularity since
 the advent of UNIX® and the viewers they require may not be
 available in the base system. This section demonstrates how to
 install the following document viewers:
	Application Name	Resources Needed	Installation from Ports	Major Dependencies
	Xpdf	light	light	FreeType
	gv	light	light	Xaw3d
	Geeqie	light	light	Gtk+ or
	 GNOME
	ePDFView	light	light	Gtk+
	Okular	light	heavy	KDE

6.4.1. Xpdf
For users that prefer a small FreeBSD PDF viewer,
	Xpdf provides a light-weight and
	efficient viewer which requires few resources. It uses the
	standard X fonts and does not require any additional
	toolkits.
To install the Xpdf
	package:
pkg install xpdf
If the package is not available, use the Ports
	Collection:
cd /usr/ports/graphics/xpdf
make install clean
Once the installation is complete, launch
	xpdf and use the right mouse button to
	activate the menu.
6.4.2. gv
gv is a PostScript® and PDF
	viewer. It is based on ghostview,
	but has a nicer look as it is based on the
	Xaw3d widget toolkit.
	gv has many configurable features,
	such as orientation, paper size, scale, and anti-aliasing.
	Almost any operation can be performed with either the
	keyboard or the mouse.
To install gv as a
	package:
pkg install gv
If a package is unavailable, use the Ports
	Collection:
cd /usr/ports/print/gv
make install clean
6.4.3. Geeqie
Geeqie is a fork from the
	unmaintained GQView project, in an
	effort to move development forward and integrate the existing
	patches. Geeqie is an image
	manager which supports viewing a file with a single click,
	launching an external editor, and thumbnail previews. It also
	features a slideshow mode and some basic file operations,
	making it easy to manage image collections and to find
	duplicate files. Geeqie supports
	full screen viewing and internationalization.
To install the Geeqie
	package:
pkg install geeqie
If the package is not available, use the Ports
	Collection:
cd /usr/ports/graphics/geeqie
make install clean
6.4.4. ePDFView
ePDFView is a lightweight
	PDF document viewer that only uses the
	Gtk+ and
	Poppler libraries. It is currently
	under development, but already opens most
	PDF files (even encrypted), save copies of
	documents, and has support for printing using
	CUPS.
To install ePDFView as a
	package:
pkg install epdfview
If a package is unavailable, use the Ports
	Collection:
cd /usr/ports/graphics/epdfview
make install clean
6.4.5. Okular
Okular is a universal document
	viewer based on KPDF for
	KDE. It can open many document
	formats, including PDF, PostScript®, DjVu,
	CHM, XPS, and
	ePub.
To install Okular as a
	package:
pkg install okular
If a package is unavailable, use the Ports
	Collection:
cd /usr/ports/graphics/okular
make install clean
13.11. FreeBSD Security Advisories
Contributed
	 by Tom Rhodes. Like many producers of quality operating systems, the FreeBSD
 Project has a security team which is responsible for
 determining the End-of-Life (EoL) date for
 each FreeBSD release and to provide security updates for supported
 releases which have not yet reached their
 EoL. More information about the FreeBSD
 security team and the supported releases is available on the
 FreeBSD security
	page.
One task of the security team is to respond to reported
 security vulnerabilities in the FreeBSD operating system. Once a
 vulnerability is confirmed, the security team verifies the steps
 necessary to fix the vulnerability and updates the source code
 with the fix. It then publishes the details as a
 “Security Advisory”. Security
 advisories are published on the FreeBSD
	website and mailed to the
 freebsd-security-notifications, freebsd-security, and
 freebsd-announce mailing lists.
This section describes the format of a FreeBSD security
 advisory.
13.11.1. Format of a Security Advisory
Here is an example of a FreeBSD security advisory:
===
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512

===
FreeBSD-SA-14:04.bind Security Advisory
 The FreeBSD Project

Topic: BIND remote denial of service vulnerability

Category: contrib
Module: bind
Announced: 2014-01-14
Credits: ISC
Affects: FreeBSD 8.x and FreeBSD 9.x
Corrected: 2014-01-14 19:38:37 UTC (stable/9, 9.2-STABLE)
 2014-01-14 19:42:28 UTC (releng/9.2, 9.2-RELEASE-p3)
 2014-01-14 19:42:28 UTC (releng/9.1, 9.1-RELEASE-p10)
 2014-01-14 19:38:37 UTC (stable/8, 8.4-STABLE)
 2014-01-14 19:42:28 UTC (releng/8.4, 8.4-RELEASE-p7)
 2014-01-14 19:42:28 UTC (releng/8.3, 8.3-RELEASE-p14)
CVE Name: CVE-2014-0591

For general information regarding FreeBSD Security Advisories,
including descriptions of the fields above, security branches, and the
following sections, please visit <URL:http://security.FreeBSD.org/>.

I. Background

BIND 9 is an implementation of the Domain Name System (DNS) protocols.
The named(8) daemon is an Internet Domain Name Server.

II. Problem Description

Because of a defect in handling queries for NSEC3-signed zones, BIND can
crash with an "INSIST" failure in name.c when processing queries possessing
certain properties. This issue only affects authoritative nameservers with
at least one NSEC3-signed zone. Recursive-only servers are not at risk.

III. Impact

An attacker who can send a specially crafted query could cause named(8)
to crash, resulting in a denial of service.

IV. Workaround

No workaround is available, but systems not running authoritative DNS service
with at least one NSEC3-signed zone using named(8) are not vulnerable.

V. Solution

Perform one of the following:

1) Upgrade your vulnerable system to a supported FreeBSD stable or
release / security branch (releng) dated after the correction date.

2) To update your vulnerable system via a source code patch:

The following patches have been verified to apply to the applicable
FreeBSD release branches.

a) Download the relevant patch from the location below, and verify the
detached PGP signature using your PGP utility.

[FreeBSD 8.3, 8.4, 9.1, 9.2-RELEASE and 8.4-STABLE]
fetch http://security.FreeBSD.org/patches/SA-14:04/bind-release.patch
fetch http://security.FreeBSD.org/patches/SA-14:04/bind-release.patch.asc
gpg --verify bind-release.patch.asc

[FreeBSD 9.2-STABLE]
fetch http://security.FreeBSD.org/patches/SA-14:04/bind-stable-9.patch
fetch http://security.FreeBSD.org/patches/SA-14:04/bind-stable-9.patch.asc
gpg --verify bind-stable-9.patch.asc

b) Execute the following commands as root:

cd /usr/src
patch < /path/to/patch

Recompile the operating system using buildworld and installworld as
described in <URL:https://www.FreeBSD.org/handbook/makeworld.html>.

Restart the applicable daemons, or reboot the system.

3) To update your vulnerable system via a binary patch:

Systems running a RELEASE version of FreeBSD on the i386 or amd64
platforms can be updated via the freebsd-update(8) utility:

freebsd-update fetch
freebsd-update install

VI. Correction details

The following list contains the correction revision numbers for each
affected branch.

Branch/path Revision
- ---
stable/8/ r260646
releng/8.3/ r260647
releng/8.4/ r260647
stable/9/ r260646
releng/9.1/ r260647
releng/9.2/ r260647
- ---

To see which files were modified by a particular revision, run the
following command, replacing NNNNNN with the revision number, on a
machine with Subversion installed:

svn diff -cNNNNNN --summarize svn://svn.freebsd.org/base

Or visit the following URL, replacing NNNNNN with the revision number:

<URL:https://svnweb.freebsd.org/base?view=revision&revision=NNNNNN>

VII. References

<URL:https://kb.isc.org/article/AA-01078>

<URL:http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0591>

The latest revision of this advisory is available at
<URL:http://security.FreeBSD.org/advisories/FreeBSD-SA-14:04.bind.asc>
-----BEGIN PGP SIGNATURE-----

iQIcBAEBCgAGBQJS1ZTYAAoJEO1n7NZdz2rnOvQP/2/68/s9Cu35PmqNtSZVVxVG
ZSQP5EGWx/lramNf9566iKxOrLRMq/h3XWcC4goVd+gZFrvITJSVOWSa7ntDQ7TO
XcinfRZ/iyiJbs/Rg2wLHc/t5oVSyeouyccqODYFbOwOlk35JjOTMUG1YcX+Zasg
ax8RV+7Zt1QSBkMlOz/myBLXUjlTZ3Xg2FXVsfFQW5/g2CjuHpRSFx1bVNX6ysoG
9DT58EQcYxIS8WfkHRbbXKh9I1nSfZ7/Hky/kTafRdRMrjAgbqFgHkYTYsBZeav5
fYWKGQRJulYfeZQ90yMTvlpF42DjCC3uJYamJnwDIu8OhS1WRBI8fQfr9DRzmRua
OK3BK9hUiScDZOJB6OqeVzUTfe7MAA4/UwrDtTYQ+PqAenv1PK8DZqwXyxA9ThHb
zKO3OwuKOVHJnKvpOcr+eNwo7jbnHlis0oBksj/mrq2P9m2ueF9gzCiq5Ri5Syag
Wssb1HUoMGwqU0roS8+pRpNC8YgsWpsttvUWSZ8u6Vj/FLeHpiV3mYXPVMaKRhVm
067BA2uj4Th1JKtGleox+Em0R7OFbCc/9aWC67wiqI6KRyit9pYiF3npph+7D5Eq
7zPsUdDd+qc+UTiLp3liCRp5w6484wWdhZO6wRtmUgxGjNkxFoNnX8CitzF8AaqO
UWWemqWuz3lAZuORQ9KX
=OQzQ
-----END PGP SIGNATURE-----
Every security advisory uses the following format:
	Each security advisory is signed by the
	 PGP key of the Security Officer. The
	 public key for the Security Officer can be verified at
	 Appendix D, OpenPGP Keys.

	The name of the security advisory always begins with
	 FreeBSD-SA- (for FreeBSD Security
	 Advisory), followed by the year in two digit format
	 (14:), followed by the advisory number
	 for that year (04.), followed by the
	 name of the affected application or subsystem
	 (bind). The advisory shown here is the
	 fourth advisory for 2014 and it affects
	 BIND.

	The Topic field summarizes the
	 vulnerability.

	The Category refers to the
	 affected part of the system which may be one of
	 core, contrib, or
	 ports. The core
	 category means that the vulnerability affects a core
	 component of the FreeBSD operating system. The
	 contrib category means that the
	 vulnerability affects software included with FreeBSD,
	 such as BIND. The
	 ports category indicates that the
	 vulnerability affects software available through the Ports
	 Collection.

	The Module field refers to the
	 component location. In this example, the
	 bind module is affected; therefore,
	 this vulnerability affects an application installed with
	 the operating system.

	The Announced field reflects the
	 date the security advisory was published. This means
	 that the security team has verified that the problem
	 exists and that a patch has been committed to the FreeBSD
	 source code repository.

	The Credits field gives credit to
	 the individual or organization who noticed the
	 vulnerability and reported it.

	The Affects field explains which
	 releases of FreeBSD are affected by this
	 vulnerability.

	The Corrected field indicates the
	 date, time, time offset, and releases that were
	 corrected. The section in parentheses shows each branch
	 for which the fix has been merged, and the version number
	 of the corresponding release from that branch. The
	 release identifier itself includes the version number
	 and, if appropriate, the patch level. The patch level is
	 the letter p followed by a number,
	 indicating the sequence number of the patch, allowing
	 users to track which patches have already been applied to
	 the system.

	The CVE Name field lists the
	 advisory number, if one exists, in the public cve.mitre.org
	 security vulnerabilities database.

	The Background field provides a
	 description of the affected module.

	The Problem Description field
	 explains the vulnerability. This can include
	 information about the flawed code and how the utility
	 could be maliciously used.

	The Impact field describes what
	 type of impact the problem could have on a system.

	The Workaround field indicates if
	 a workaround is available to system administrators who
	 cannot immediately patch the system .

	The Solution field provides the
	 instructions for patching the affected system. This is a
	 step by step tested and verified method for getting a
	 system patched and working securely.

	The Correction Details field
	 displays each affected Subversion branch with the revision
	 number that contains the corrected code.

	The References field offers sources
	 of additional information regarding the
	 vulnerability.

7.6. MythTV
MythTV is a popular, open source Personal Video Recorder
 (PVR) application. This section demonstrates
 how to install and setup MythTV on FreeBSD. Refer to mythtv.org/wiki
 for more information on how to use MythTV.
MythTV requires a frontend and a backend. These components
 can either be installed on the same system or on different
 machines.
The frontend can be installed on FreeBSD using the
 multimedia/mythtv-frontend package or port.
 Xorg must also be installed and
 configured as described in Chapter 5, The X Window System. Ideally, this
 system has a video card that supports X-Video Motion
 Compensation (XvMC) and, optionally, a Linux
 Infrared Remote Control (LIRC)-compatible
 remote.
To install both the backend and the frontend on FreeBSD, use
 the multimedia/mythtv package or port. A
 MySQL™ database server is also required and should
 automatically be installed as a dependency. Optionally, this
 system should have a tuner card and sufficient storage to hold
 recorded data.
7.6.1. Hardware
MythTV uses Video for Linux (V4L) to
	access video input devices such as encoders and tuners. In
	FreeBSD, MythTV works best with USB DVB-S/C/T
	cards as they are well supported by the
	multimedia/webcamd package or port which
	provides a V4L userland application. Any
	Digital Video Broadcasting (DVB) card
	supported by webcamd should work
	with MythTV. A list of known working cards can be found at
	wiki.freebsd.org/WebcamCompat.
	Drivers are also available for Hauppauge cards in the
	multimedia/pvr250 and
	multimedia/pvrxxx ports, but they provide a
	non-standard driver interface that does not work with versions
	of MythTV greater than 0.23. Due to licensing restrictions,
	no packages are available and these two ports must be
	compiled.
The wiki.freebsd.org/HTPC
	page contains a list of all available DVB
	drivers.
7.6.2. Setting up the MythTV Backend
To install MythTV using binary packages:
pkg install mythtv
Alternatively, to install from the Ports Collection:
cd /usr/ports/multimedia/mythtv
make install
Once installed, set up the MythTV database:
mysql -uroot -p < /usr/local/share/mythtv/database/mc.sql
Then, configure the backend:
mythtv-setup
Finally, start the backend:
sysrc mythbackend_enable=yes
service mythbackend start
Part I. Getting Started
This part of the handbook is for users and administrators
	who are new to FreeBSD. These chapters:
	Introduce FreeBSD.

	Guide readers through the installation process.

	Teach UNIX® basics and fundamentals.

	Show how to install the wealth of third party
	 applications available for FreeBSD.

	Introduce X, the UNIX® windowing system, and detail
	 how to configure a desktop environment that makes users
	 more productive.

The number of forward references in the text have been
	kept to a minimum so that this section can be read from front
	to back with minimal page flipping.

Chapter 8. Configuring the FreeBSD Kernel
8.1. Synopsis
The kernel is the core of the FreeBSD operating system. It
 is responsible for managing memory, enforcing security controls,
 networking, disk access, and much more. While much of FreeBSD is
 dynamically configurable, it is still occasionally necessary to
 configure and compile a custom kernel.
After reading this chapter, you will know:
	When to build a custom kernel.

	How to take a hardware inventory.

	How to customize a kernel configuration file.

	How to use the kernel configuration file to create and
	 build a new kernel.

	How to install the new kernel.

	How to troubleshoot if things go wrong.

All of the commands listed in the examples in this chapter
 should be executed as root.
14.2. Terms Related to Jails
To facilitate better understanding of parts of the FreeBSD
 system related to jails, their internals and the way they
 interact with the rest of FreeBSD, the following terms are used
 further in this chapter:
	chroot(8) (command)
	Utility, which uses chroot(2) FreeBSD system call to
	 change the root directory of a process and all its
	 descendants.

	chroot(2) (environment)
	The environment of processes running in a
	 “chroot”. This includes resources such as
	 the part of the file system which is visible, user and
	 group IDs which are available, network interfaces and
	 other IPC mechanisms, etc.

	jail(8) (command)
	The system administration utility which allows
	 launching of processes within a jail environment.

	host (system, process, user, etc.)
	The controlling system of a jail environment. The
	 host system has access to all the hardware resources
	 available, and can control processes both outside of and
	 inside a jail environment. One of the important
	 differences of the host system from a jail is that the
	 limitations which apply to superuser processes inside a
	 jail are not enforced for processes of the host
	 system.

	hosted (system, process, user, etc.)
	A process, user or other entity, whose access to
	 resources is restricted by a FreeBSD jail.

16.2. Key Terms
The following terms are related to security event
 auditing:
	event: an auditable event is any
	 event that can be logged using the audit subsystem.
	 Examples of security-relevant events include the creation of
	 a file, the building of a network connection, or a user
	 logging in. Events are either “attributable”,
	 meaning that they can be traced to an authenticated user, or
	 “non-attributable”. Examples of
	 non-attributable events are any events that occur before
	 authentication in the login process, such as bad password
	 attempts.

	class: a named set of related
	 events which are used in selection expressions. Commonly
	 used classes of events include “file creation”
	 (fc), “exec” (ex), and
	 “login_logout” (lo).

	record: an audit log entry
	 describing a security event. Records contain a record
	 event type, information on the subject (user) performing the
	 action, date and time information, information on any
	 objects or arguments, and a success or failure
	 condition.

	trail: a log file consisting of a
	 series of audit records describing security events. Trails
	 are in roughly chronological order with respect to the time
	 events completed. Only authorized processes are allowed to
	 commit records to the audit trail.

	selection expression: a string
	 containing a list of prefixes and audit event class names
	 used to match events.

	preselection: the process by which
	 the system identifies which events are of interest to the
	 administrator. The preselection configuration uses a series
	 of selection expressions to identify which classes of events
	 to audit for which users, as well as global settings that
	 apply to both authenticated and unauthenticated
	 processes.

	reduction: the process by which
	 records from existing audit trails are selected for
	 preservation, printing, or analysis. Likewise, the process
	 by which undesired audit records are removed from the audit
	 trail. Using reduction, administrators can implement
	 policies for the preservation of audit data. For example,
	 detailed audit trails might be kept for one month, but after
	 that, trails might be reduced in order to preserve only
	 login information for archival purposes.

29.10. File and Print Services for Microsoft® Windows® Clients
 (Samba)
Samba is a popular open source
 software package that provides file and print services using the
 SMB/CIFS protocol. This protocol is built
 into Microsoft® Windows® systems. It can be added to
 non-Microsoft® Windows® systems by installing the
 Samba client libraries. The protocol
 allows clients to access shared data and printers. These shares
 can be mapped as a local disk drive and shared printers can be
 used as if they were local printers.
On FreeBSD, the Samba client
 libraries can be installed using the
 net/samba410 port or package. The
 client provides the ability for a FreeBSD system to access
 SMB/CIFS shares in a Microsoft® Windows®
 network.
A FreeBSD system can also be configured to act as a
 Samba server by installing the same
 net/samba410 port or package. This allows the
 administrator to create SMB/CIFS
 shares on
 the FreeBSD system which can be accessed by clients running
 Microsoft® Windows® or the Samba
 client libraries.
29.10.1. Server Configuration
Samba is configured in
	/usr/local/etc/smb4.conf. This file must
	be created before Samba
	can be used.
A simple smb4.conf to share
	directories and printers with Windows® clients in a
	workgroup is shown here. For more complex setups
	involving LDAP or Active Directory, it is easier to use
	samba-tool(8) to create the initial
	smb4.conf.
[global]
workgroup = WORKGROUP
server string = Samba Server Version %v
netbios name = ExampleMachine
wins support = Yes
security = user
passdb backend = tdbsam

Example: share /usr/src accessible only to 'developer' user
[src]
path = /usr/src
valid users = developer
writable = yes
browsable = yes
read only = no
guest ok = no
public = no
create mask = 0666
directory mask = 0755
29.10.1.1. Global Settings
Settings that describe the network are added in
	 /usr/local/etc/smb4.conf:
	workgroup
	The name of the workgroup to be served.

	netbios name
	The NetBIOS name by which a
		Samba server is known. By
		default, it is the same as the first component of the
		host's DNS name.

	server string
	The string that will be displayed in the output of
		net view and some other
		networking tools that seek to display descriptive text
		about the server.

	wins support
	Whether Samba will
		act as a WINS server. Do not
		enable support for WINS on more than
		one server on the network.

29.10.1.2. Security Settings
The most important settings in
	 /usr/local/etc/smb4.conf are the
	 security model and the backend password format. These
	 directives control the options:
	security
	The most common settings are
		security = share and
		security = user. If the clients
		use usernames that are the same as their usernames on
		the FreeBSD machine, user level security should be
		used. This is the default security policy and it
		requires clients to first log on before they can
		access shared resources.
In share level security, clients do not need to
		log onto the server with a valid username and password
		before attempting to connect to a shared resource.
		This was the default security model for older versions
		of Samba.

	passdb backend
	Samba has several
		different backend authentication models. Clients may
		be authenticated with LDAP, NIS+, an SQL database,
		or a modified password file. The recommended
		authentication method, tdbsam,
		is ideal for simple networks and is covered here.
		For larger or more complex networks,
		ldapsam is recommended.
		smbpasswd
		was the former default and is now obsolete.

29.10.1.3. Samba Users
FreeBSD user accounts must be mapped to the
	 SambaSAMAccount database for
	 Windows® clients to access the share.
	 Map existing FreeBSD user accounts using
	 pdbedit(8):
pdbedit -a username
This section has only mentioned the most commonly used
	 settings. Refer to the Official
	 Samba Wiki for additional information about the
	 available configuration options.
29.10.2. Starting Samba
To enable Samba at boot time,
	add the following line to
	/etc/rc.conf:
samba_server_enable="YES"
To start Samba now:
service samba_server start
Performing sanity check on Samba configuration: OK
Starting nmbd.
Starting smbd.
Samba consists of three
	separate daemons. Both the nmbd
	and smbd daemons are started by
	samba_enable. If winbind name resolution
	is also required, set:
winbindd_enable="YES"
Samba can be stopped at any
	time by typing:
service samba_server stop
Samba is a complex software
	suite with functionality that allows broad integration with
	Microsoft® Windows® networks. For more information about
	functionality beyond the basic configuration described here,
	refer to https://www.samba.org.
21.4. FreeBSD as a Guest on VMware Fusion
 for Mac OS®
VMware Fusion for Mac® is a
 commercial software product available for Intel® based Apple®
 Mac® computers running Mac OS® 10.4.9 or higher. FreeBSD is a
 fully supported guest operating system. Once
 VMware Fusion has been installed on
 Mac OS® X, the user can configure a virtual machine and then
 install the desired guest operating system.
21.4.1. Installing FreeBSD on
	VMware Fusion
The first step is to start
	VMware Fusion which will load the
	Virtual Machine Library. Click New
	to create the virtual machine:

This will load the New Virtual Machine Assistant. Click
	Continue to proceed:

Select Other as the
	Operating System and either
	FreeBSD or
	FreeBSD 64-bit, as the
	Version when prompted:

Choose the name of the virtual machine and the directory
	where it should be saved:

Choose the size of the Virtual Hard Disk for the virtual
	machine:

Choose the method to install the virtual machine, either
	from an ISO image or from a
	CD/DVD:

Click Finish and the virtual
	machine will boot:

Install FreeBSD as usual:

Once the install is complete, the settings of the virtual
	machine can be modified, such as memory usage:
Note:
The System Hardware settings of the virtual machine
	 cannot be modified while the virtual machine is
	 running.

The number of CPUs the virtual machine will have access
	to:

The status of the CD-ROM device.
	Normally the
	CD/DVD/ISO
	is disconnected from the virtual machine when it is no longer
	needed.

The last thing to change is how the virtual machine will
	connect to the network. To allow connections to the virtual
	machine from other machines besides the host, choose
	Connect directly to the physical network
	 (Bridged). Otherwise,
	Share the host's internet connection
	 (NAT) is preferred so that the virtual machine
	can have access to the Internet, but the network cannot access
	the virtual machine.

After modifying the settings, boot the newly installed
	FreeBSD virtual machine.
21.4.2. Configuring FreeBSD on VMware
	 Fusion
After FreeBSD has been successfully installed on Mac OS® X
	with VMware Fusion, there are a
	number of configuration steps that can be taken to optimize
	the system for virtualized operation.
	Set Boot Loader Variables
The most important step is to reduce the
	 kern.hz tunable to reduce the CPU
	 utilization of FreeBSD under the
	 VMware Fusion environment.
	 This is accomplished by adding the following line to
	 /boot/loader.conf:
kern.hz=100
Without this setting, an idle FreeBSD
	 VMware Fusion guest will use
	 roughly 15% of the CPU of a single processor iMac®.
	 After this change, the usage will be closer to 5%.

	Create a New Kernel Configuration File
All of the FireWire, and USB device drivers can be
	 removed from a custom kernel configuration file.
	 VMware Fusion provides a
	 virtual network adapter used by the em(4) driver, so
	 all network devices except for em(4) can be removed
	 from the kernel.

	Configure Networking
The most basic networking setup uses DHCP to connect
	 the virtual machine to the same local area network as the
	 host Mac®. This can be accomplished by adding
	 ifconfig_em0="DHCP" to
	 /etc/rc.conf. More advanced
	 networking setups are described in
	 Chapter 31, Advanced Networking.

11.10. Tuning Disks
The following section will discuss various tuning
 mechanisms and options which may be applied to disk
 devices. In many cases, disks with mechanical parts,
 such as SCSI drives, will be the
 bottleneck driving down the overall system performance. While
 a solution is to install a drive without mechanical parts,
 such as a solid state drive, mechanical drives are not
 going away anytime in the near future. When tuning disks,
 it is advisable to utilize the features of the iostat(8)
 command to test various changes to the system. This
 command will allow the user to obtain valuable information
 on system IO.
11.10.1. Sysctl Variables
11.10.1.1. vfs.vmiodirenable
The vfs.vmiodirenable sysctl(8)
	 variable
	 may be set to either 0 (off) or
	 1 (on). It is set to
	 1 by default. This variable controls
	 how directories are cached by the system. Most directories
	 are small, using just a single fragment (typically 1 K)
	 in the file system and typically 512 bytes in the
	 buffer cache. With this variable turned off, the buffer
	 cache will only cache a fixed number of directories, even
	 if the system has a huge amount of memory. When turned on,
	 this sysctl(8) allows the buffer cache to use the
	 VM page cache to cache the directories,
	 making all the memory available for caching directories.
	 However, the minimum in-core memory used to cache a
	 directory is the physical page size (typically 4 K)
	 rather than 512 bytes. Keeping this option enabled
	 is recommended if the system is running any services which
	 manipulate large numbers of files. Such services can
	 include web caches, large mail systems, and news systems.
	 Keeping this option on will generally not reduce
	 performance, even with the wasted memory, but one should
	 experiment to find out.
11.10.1.2. vfs.write_behind
The vfs.write_behind sysctl(8)
	 variable
	 defaults to 1 (on). This tells the file
	 system to issue media writes as full clusters are collected,
	 which typically occurs when writing large sequential files.
	 This avoids saturating the buffer cache with dirty buffers
	 when it would not benefit I/O performance. However, this
	 may stall processes and under certain circumstances should
	 be turned off.
11.10.1.3. vfs.hirunningspace
The vfs.hirunningspace sysctl(8)
	 variable determines how much outstanding write I/O may be
	 queued to disk controllers system-wide at any given
	 instance. The default is usually sufficient, but on
	 machines with many disks, try bumping it up to four or five
	 megabytes. Setting too high a value
	 which exceeds the buffer cache's write threshold can lead
	 to bad clustering performance. Do not set this value
	 arbitrarily high as higher write values may add latency to
	 reads occurring at the same time.
There are various other buffer cache and
	 VM page cache related sysctl(8)
	 values. Modifying these values is not recommended as the
	 VM system does a good job of
	 automatically tuning itself.
11.10.1.4. vm.swap_idle_enabled
The vm.swap_idle_enabled
	 sysctl(8) variable is useful in large multi-user
	 systems with many active login users and lots of idle
	 processes. Such systems tend to generate continuous
	 pressure on free memory reserves. Turning this feature on
	 and tweaking the swapout hysteresis (in idle seconds) via
	 vm.swap_idle_threshold1 and
	 vm.swap_idle_threshold2 depresses the
	 priority of memory pages associated with idle processes more
	 quickly then the normal pageout algorithm. This gives a
	 helping hand to the pageout daemon. Only turn this option
	 on if needed, because the tradeoff is essentially pre-page
	 memory sooner rather than later which eats more swap and
	 disk bandwidth. In a small system this option will have a
	 determinable effect, but in a large system that is already
	 doing moderate paging, this option allows the
	 VM system to stage whole processes into
	 and out of memory easily.
11.10.1.5. hw.ata.wc
Turning off IDE write caching reduces
	 write bandwidth to IDE disks, but may
	 sometimes be necessary due to data consistency issues
	 introduced by hard drive vendors. The problem is that
	 some IDE drives lie about when a write
	 completes. With IDE write caching
	 turned on, IDE hard drives write data
	 to disk out of order and will sometimes delay writing some
	 blocks indefinitely when under heavy disk load. A crash or
	 power failure may cause serious file system corruption.
	 Check the default on the system by observing the
	 hw.ata.wc sysctl(8) variable. If
	 IDE write caching is turned off, one can
	 set this read-only variable to
	 1 in
	 /boot/loader.conf in order to enable
	 it at boot time.
For more information, refer to ata(4).
11.10.1.6. SCSI_DELAY
	 (kern.cam.scsi_delay)
The SCSI_DELAY kernel configuration
	 option may be used to reduce system boot times. The
	 defaults are fairly high and can be responsible for
	 15 seconds of delay in the boot process.
	 Reducing it to 5 seconds usually works
	 with modern drives. The
	 kern.cam.scsi_delay boot time tunable
	 should be used. The tunable and kernel configuration
	 option accept values in terms of
	 milliseconds and
	 not
	 seconds.
11.10.2. Soft Updates
To fine-tune a file system, use tunefs(8). This
	program has many different options. To toggle Soft Updates
	on and off, use:
tunefs -n enable /filesystem
tunefs -n disable /filesystem
A file system cannot be modified with tunefs(8) while
	it is mounted. A good time to enable Soft Updates is before
	any partitions have been mounted, in single-user mode.
Soft Updates is recommended for UFS
	file systems as it drastically improves meta-data performance,
	mainly file creation and deletion, through the use of a memory
	cache. There are two downsides to Soft Updates to be aware
	of. First, Soft Updates guarantee file system consistency
	in the case of a crash, but could easily be several seconds
	or even a minute behind updating the physical disk. If the
	system crashes, unwritten data may be lost. Secondly, Soft
	Updates delay the freeing of file system blocks. If the
	root file system is almost full, performing a major update,
	such as make installworld, can cause the
	file system to run out of space and the update to fail.
11.10.2.1. More Details About Soft Updates
Meta-data updates are updates to non-content data like
	 inodes or directories. There are two traditional approaches
	 to writing a file system's meta-data back to disk.
Historically, the default behavior was to write out
	 meta-data updates synchronously. If a directory changed,
	 the system waited until the change was actually written to
	 disk. The file data buffers (file contents) were passed
	 through the buffer cache and backed up to disk later on
	 asynchronously. The advantage of this implementation is
	 that it operates safely. If there is a failure during an
	 update, meta-data is always in a consistent state. A
	 file is either created completely or not at all. If the
	 data blocks of a file did not find their way out of the
	 buffer cache onto the disk by the time of the crash,
	 fsck(8) recognizes this and repairs the file system
	 by setting the file length to 0.
	 Additionally, the implementation is clear and simple. The
	 disadvantage is that meta-data changes are slow. For
	 example, rm -r touches all the files in a
	 directory sequentially, but each directory change will be
	 written synchronously to the disk. This includes updates to
	 the directory itself, to the inode table, and possibly to
	 indirect blocks allocated by the file. Similar
	 considerations apply for unrolling large hierarchies using
	 tar -x.
The second approach is to use asynchronous meta-data
	 updates. This is the default for a UFS
	 file system mounted with mount -o async.
	 Since all meta-data updates are also passed through the
	 buffer cache, they will be intermixed with the updates of
	 the file content data. The advantage of this
	 implementation is there is no need to wait until each
	 meta-data update has been written to disk, so all operations
	 which cause huge amounts of meta-data updates work much
	 faster than in the synchronous case. This implementation
	 is still clear and simple, so there is a low risk for bugs
	 creeping into the code. The disadvantage is that there is
	 no guarantee for a consistent state of the file system.
	 If there is a failure during an operation that updated
	 large amounts of meta-data, like a power failure or someone
	 pressing the reset button, the file system will be left
	 in an unpredictable state. There is no opportunity to
	 examine the state of the file system when the system comes
	 up again as the data blocks of a file could already have
	 been written to the disk while the updates of the inode
	 table or the associated directory were not. It is
	 impossible to implement a fsck(8) which is able to
	 clean up the resulting chaos because the necessary
	 information is not available on the disk. If the file
	 system has been damaged beyond repair, the only choice
	 is to reformat it and restore from backup.
The usual solution for this problem is to implement
	 dirty region logging, which is also
	 referred to as journaling.
	 Meta-data updates are still written synchronously, but only
	 into a small region of the disk. Later on, they are moved
	 to their proper location. Because the logging area is a
	 small, contiguous region on the disk, there are no long
	 distances for the disk heads to move, even during heavy
	 operations, so these operations are quicker than synchronous
	 updates. Additionally, the complexity of the implementation
	 is limited, so the risk of bugs being present is low. A
	 disadvantage is that all meta-data is written twice, once
	 into the logging region and once to the proper location, so
	 performance “pessimization” might result. On
	 the other hand, in case of a crash, all pending meta-data
	 operations can be either quickly rolled back or completed
	 from the logging area after the system comes up again,
	 resulting in a fast file system startup.
Kirk McKusick, the developer of Berkeley
	 FFS, solved this problem with Soft
	 Updates. All pending meta-data updates are kept in memory
	 and written out to disk in a sorted sequence
	 (“ordered meta-data updates”). This has the
	 effect that, in case of heavy meta-data operations, later
	 updates to an item “catch” the earlier ones
	 which are still in memory and have not already been written
	 to disk. All operations are generally performed in memory
	 before the update is written to disk and the data blocks are
	 sorted according to their position so that they will not be
	 on the disk ahead of their meta-data. If the system
	 crashes, an implicit “log rewind” causes all
	 operations which were not written to the disk appear as if
	 they never happened. A consistent file system state is
	 maintained that appears to be the one of 30 to 60 seconds
	 earlier. The algorithm used guarantees that all resources
	 in use are marked as such in their blocks and inodes.
	 After a crash, the only resource allocation error that
	 occurs is that resources are marked as “used”
	 which are actually “free”. fsck(8)
	 recognizes this situation, and frees the resources that
	 are no longer used. It is safe to ignore the dirty state
	 of the file system after a crash by forcibly mounting it
	 with mount -f. In order to free
	 resources that may be unused, fsck(8) needs to be run
	 at a later time. This is the idea behind the
	 background fsck(8): at system
	 startup time, only a snapshot of the
	 file system is recorded and fsck(8) is run afterwards.
	 All file systems can then be mounted
	 “dirty”, so the system startup proceeds in
	 multi-user mode. Then, background fsck(8) is
	 scheduled for all file systems where this is required, to
	 free resources that may be unused. File systems that do
	 not use Soft Updates still need the usual foreground
	 fsck(8).
The advantage is that meta-data operations are nearly
	 as fast as asynchronous updates and are faster than
	 logging, which has to write the
	 meta-data twice. The disadvantages are the complexity of
	 the code, a higher memory consumption, and some
	 idiosyncrasies. After a crash, the state of the file
	 system appears to be somewhat “older”. In
	 situations where the standard synchronous approach would
	 have caused some zero-length files to remain after the
	 fsck(8), these files do not exist at all with Soft
	 Updates because neither the meta-data nor the file contents
	 have been written to disk. Disk space is not released until
	 the updates have been written to disk, which may take place
	 some time after running rm(1). This may cause problems
	 when installing large amounts of data on a file system
	 that does not have enough free space to hold all the files
	 twice.
18.2. RAID0 - Striping
Written by Tom Rhodes and Murray Stokely. Striping combines several disk drives into a single volume.
 Striping can be performed through the use of hardware
 RAID controllers. The
 GEOM disk subsystem provides software support
 for disk striping, also known as RAID0,
 without the need for a RAID disk
 controller.
In RAID0, data is split into blocks that
 are written across all the drives in the array. As seen in the
 following illustration, instead of having to wait on the system
 to write 256k to one disk, RAID0 can
 simultaneously write 64k to each of the four disks in the array,
 offering superior I/O performance. This
 performance can be enhanced further by using multiple disk
 controllers.
[image: Disk Striping Illustration]
Each disk in a RAID0 stripe must be of
 the same size, since I/O requests are
 interleaved to read or write to multiple disks in
 parallel.
Note:
RAID0 does not
	provide any redundancy. This means that if one disk in the
	array fails, all of the data on the disks is lost. If the
	data is important, implement a backup strategy that regularly
	saves backups to a remote system or device.

The process for creating a software,
 GEOM-based RAID0 on a FreeBSD
 system using commodity disks is as follows. Once the stripe is
 created, refer to gstripe(8) for more information on how
 to control an existing stripe.
Procedure 18.1. Creating a Stripe of Unformatted ATA
	Disks
	Load the geom_stripe.ko
	 module:
kldload geom_stripe

	Ensure that a suitable mount point exists. If this
	 volume will become a root partition, then temporarily use
	 another mount point such as
	 /mnt.

	Determine the device names for the disks which will
	 be striped, and create the new stripe device. For example,
	 to stripe two unused and unpartitioned
	 ATA disks with device names of
	 /dev/ad2 and
	 /dev/ad3:
gstripe label -v st0 /dev/ad2 /dev/ad3
Metadata value stored on /dev/ad2.
Metadata value stored on /dev/ad3.
Done.

	Write a standard label, also known as a partition table,
	 on the new volume and install the default bootstrap
	 code:
bsdlabel -wB /dev/stripe/st0

	This process should create two other devices in
	 /dev/stripe in addition to
	 st0. Those include
	 st0a and st0c. At
	 this point, a UFS file system can be
	 created on st0a using
	 newfs:
newfs -U /dev/stripe/st0a
Many numbers will glide across the screen, and after a
	 few seconds, the process will be complete. The volume has
	 been created and is ready to be mounted.

	To manually mount the created disk stripe:
mount /dev/stripe/st0a /mnt

	To mount this striped file system automatically during
	 the boot process, place the volume information in
	 /etc/fstab. In this example, a
	 permanent mount point, named stripe, is
	 created:
mkdir /stripe
echo "/dev/stripe/st0a /stripe ufs rw 2 2" \
>> /etc/fstab

	The geom_stripe.ko module must also
	 be automatically loaded during system initialization, by
	 adding a line to
	 /boot/loader.conf:
echo 'geom_stripe_load="YES"' >> /boot/loader.conf

13.10. Monitoring Third Party Security Issues
Contributed
	 by Tom Rhodes. In recent years, the security world has made many
 improvements to how vulnerability assessment is handled. The
 threat of system intrusion increases as third party utilities
 are installed and configured for virtually any operating
 system available today.
Vulnerability assessment is a key factor in security.
 While FreeBSD releases advisories for the base system, doing so
 for every third party utility is beyond the FreeBSD Project's
 capability. There is a way to mitigate third party
 vulnerabilities and warn administrators of known security
 issues. A FreeBSD add on utility known as
 pkg includes options explicitly for
 this purpose.
pkg polls a database for security
 issues. The database is updated and maintained by the FreeBSD
 Security Team and ports developers.
Please refer to instructions
 for installing
 pkg.
Installation provides periodic(8) configuration files
 for maintaining the pkg audit
 database, and provides a programmatic method of keeping it
 updated. This functionality is enabled if
 daily_status_security_pkgaudit_enable
 is set to YES in periodic.conf(5).
 Ensure that daily security run emails, which are sent to
 root's email account,
 are being read.
After installation, and to audit third party utilities as
 part of the Ports Collection at any time, an administrator may
 choose to update the database and view known vulnerabilities
 of installed packages by invoking:
pkg audit -F
pkg displays messages
 any published vulnerabilities in installed packages:
Affected package: cups-base-1.1.22.0_1
Type of problem: cups-base -- HPGL buffer overflow vulnerability.
Reference: <https://www.FreeBSD.org/ports/portaudit/40a3bca2-6809-11d9-a9e7-0001020eed82.html>

1 problem(s) in your installed packages found.

You are advised to update or deinstall the affected package(s) immediately.
By pointing a web browser to the displayed
 URL, an administrator may obtain more
 information about the vulnerability. This will include the
 versions affected, by FreeBSD port version, along with other web
 sites which may contain security advisories.
pkg is a powerful utility
 and is extremely useful when coupled with
 ports-mgmt/portmaster.
5.3. Installing Xorg
On FreeBSD, Xorg can be installed
 as a package or port.
The binary package can be installed quickly but with
 fewer options for customization:
pkg install xorg
To build and install from the Ports Collection:
cd /usr/ports/x11/xorg
make install clean
Either of these installations results in the complete
 Xorg system being installed. Binary packages
 are the best option for most users.
A smaller version of the X system suitable for experienced
 users is available in x11/xorg-minimal. Most
 of the documents, libraries, and applications will not be
 installed. Some applications require these additional
 components to function.
26.4. Dial-in Service
Contributed by Guy Helmer. Additions by Sean Kelly. Configuring a FreeBSD system for dial-in service is similar to
 configuring terminals, except that modems are used instead of
 terminal devices. FreeBSD supports both external and internal
 modems.
External modems are more convenient because they often can
 be configured via parameters stored in non-volatile
 RAM and they usually provide lighted
 indicators that display the state of important
 RS-232 signals, indicating whether the modem
 is operating properly.
Internal modems usually lack non-volatile
 RAM, so their configuration may be limited to
 setting DIP switches. If the internal modem
 has any signal indicator lights, they are difficult to view when
 the system's cover is in place.
When using an external modem, a proper cable is needed. A
 standard RS-232C serial cable should
 suffice.
FreeBSD needs the RTS and
 CTS signals for flow control at speeds above
 2400 bps, the CD signal to detect when a
 call has been answered or the line has been hung up, and the
 DTR signal to reset the modem after a session
 is complete. Some cables are wired without all of the needed
 signals, so if a login session does not go away when the line
 hangs up, there may be a problem with the cable. Refer to Section 26.2.1, “Serial Cables and Ports” for more information about these
 signals.
Like other UNIX®-like operating systems, FreeBSD uses the
 hardware signals to find out when a call has been answered or a
 line has been hung up and to hangup and reset the modem after a
 call. FreeBSD avoids sending commands to the modem or watching for
 status reports from the modem.
FreeBSD supports the NS8250,
 NS16450, NS16550, and
 NS16550A-based RS-232C
 (CCITT V.24) communications interfaces. The
 8250 and 16450 devices have single-character buffers. The 16550
 device provides a 16-character buffer, which allows for better
 system performance. Bugs in plain 16550 devices prevent the use
 of the 16-character buffer, so use 16550A devices if possible.
 Because single-character-buffer devices require more work by the
 operating system than the 16-character-buffer devices,
 16550A-based serial interface cards are preferred. If the
 system has many active serial ports or will have a heavy load,
 16550A-based cards are better for low-error-rate
 communications.
The rest of this section demonstrates how to configure a
 modem to receive incoming connections, how to communicate with
 the modem, and offers some troubleshooting tips.
26.4.1. Modem Configuration
As with terminals, init spawns a
	getty process for each configured serial
	port used for dial-in connections. When a user dials the
	modem's line and the modems connect, the “Carrier
	 Detect” signal is reported by the modem. The kernel
	notices that the carrier has been detected and instructs
	getty to open the port and display a
	login: prompt at the specified initial line
	speed. In a typical configuration, if garbage characters are
	received, usually due to the modem's connection speed being
	different than the configured speed, getty
	tries adjusting the line speeds until it receives reasonable
	characters. After the user enters their login name,
	getty executes login,
	which completes the login process by asking for the user's
	password and then starting the user's shell.
There are two schools of thought regarding dial-up modems.
	One configuration method is to set the modems and systems so
	that no matter at what speed a remote user dials in, the
	dial-in RS-232 interface runs at a locked
	speed. The benefit of this configuration is that the remote
	user always sees a system login prompt immediately. The
	downside is that the system does not know what a user's true
	data rate is, so full-screen programs like
	Emacs will not adjust their
	screen-painting methods to make their response better for
	slower connections.
The second method is to configure the
	RS-232 interface to vary its speed based on
	the remote user's connection speed. Because
	getty does not understand any particular
	modem's connection speed reporting, it gives a
	login: message at an initial speed and
	watches the characters that come back in response. If the
	user sees junk, they should press Enter until
	they see a recognizable prompt. If the data rates do not
	match, getty sees anything the user types
	as junk, tries the next speed, and gives the
	login: prompt again. This procedure normally
	only takes a keystroke or two before the user sees a good
	prompt. This login sequence does not look as clean as the
	locked-speed method, but a user on a low-speed connection
	should receive better interactive response from full-screen
	programs.
When locking a modem's data communications rate at a
	particular speed, no changes to
	/etc/gettytab should be needed. However,
	for a matching-speed configuration, additional entries may be
	required in order to define the speeds to use for the modem.
	This example configures a 14.4 Kbps modem with a top
	interface speed of 19.2 Kbps using 8-bit, no parity
	connections. It configures getty to start
	the communications rate for a V.32bis connection at
	19.2 Kbps, then cycles through 9600 bps,
	2400 bps, 1200 bps, 300 bps, and back to
	19.2 Kbps. Communications rate cycling is implemented
	with the nx= (next table) capability. Each
	line uses a tc= (table continuation) entry
	to pick up the rest of the settings for a particular data
	rate.
#
Additions for a V.32bis Modem
#
um|V300|High Speed Modem at 300,8-bit:\
 :nx=V19200:tc=std.300:
un|V1200|High Speed Modem at 1200,8-bit:\
 :nx=V300:tc=std.1200:
uo|V2400|High Speed Modem at 2400,8-bit:\
 :nx=V1200:tc=std.2400:
up|V9600|High Speed Modem at 9600,8-bit:\
 :nx=V2400:tc=std.9600:
uq|V19200|High Speed Modem at 19200,8-bit:\
 :nx=V9600:tc=std.19200:
For a 28.8 Kbps modem, or to take advantage of
	compression on a 14.4 Kbps modem, use a higher
	communications rate, as seen in this example:
#
Additions for a V.32bis or V.34 Modem
Starting at 57.6 Kbps
#
vm|VH300|Very High Speed Modem at 300,8-bit:\
 :nx=VH57600:tc=std.300:
vn|VH1200|Very High Speed Modem at 1200,8-bit:\
 :nx=VH300:tc=std.1200:
vo|VH2400|Very High Speed Modem at 2400,8-bit:\
 :nx=VH1200:tc=std.2400:
vp|VH9600|Very High Speed Modem at 9600,8-bit:\
 :nx=VH2400:tc=std.9600:
vq|VH57600|Very High Speed Modem at 57600,8-bit:\
 :nx=VH9600:tc=std.57600:
For a slow CPU or a heavily loaded
	system without 16550A-based serial ports, this configuration
	may produce sio
	“silo” errors at 57.6 Kbps.
The configuration of /etc/ttys is
	similar to Example 26.1, “Configuring Terminal Entries”, but a different
	argument is passed to getty and
	dialup is used for the terminal type.
	Replace xxx with the process
	init will run on the device:
ttyu0 "/usr/libexec/getty xxx" dialup on
The dialup terminal type can be
	changed. For example, setting vt102 as the
	default terminal type allows users to use
	VT102 emulation on their remote
	systems.
For a locked-speed configuration, specify the speed with
	a valid type listed in /etc/gettytab.
	This example is for a modem whose port speed is locked at
	19.2 Kbps:
ttyu0 "/usr/libexec/getty std.19200" dialup on
In a matching-speed configuration, the entry needs to
	reference the appropriate beginning “auto-baud”
	entry in /etc/gettytab. To continue the
	example for a matching-speed modem that starts at
	19.2 Kbps, use this entry:
ttyu0 "/usr/libexec/getty V19200" dialup on
After editing /etc/ttys, wait until
	the modem is properly configured and connected before
	signaling init:
kill -HUP 1
High-speed modems, like V.32,
	V.32bis, and V.34
	modems, use hardware (RTS/CTS) flow
	control. Use stty to set the hardware flow
	control flag for the modem port. This example sets the
	crtscts flag on COM2's
	dial-in and dial-out initialization devices:
stty -f /dev/ttyu1.init crtscts
stty -f /dev/cuau1.init crtscts
26.4.2. Troubleshooting
This section provides a few tips for troubleshooting a
	dial-up modem that will not connect to a FreeBSD system.
Hook up the modem to the FreeBSD system and boot the system.
	If the modem has status indication lights, watch to see
	whether the modem's DTR indicator lights
	when the login: prompt appears on the
	system's console. If it lights up, that should mean that FreeBSD
	has started a getty process on the
	appropriate communications port and is waiting for the modem
	to accept a call.
If the DTR indicator does not light,
	login to the FreeBSD system through the console and type
	ps ax to see if FreeBSD is running a
	getty process on the correct port:
 114 ?? I 0:00.10 /usr/libexec/getty V19200 ttyu0
If the second column contains a d0
	instead of a ?? and the modem has not
	accepted a call yet, this means that getty
	has completed its open on the communications port. This could
	indicate a problem with the cabling or a misconfigured modem
	because getty should not be able to open
	the communications port until the carrier detect signal has
	been asserted by the modem.
If no getty processes are waiting to
	open the port, double-check that the entry for the port is
	correct in /etc/ttys. Also, check
	/var/log/messages to see if there are
	any log messages from init or
	getty.
Next, try dialing into the system. Be sure to use 8 bits,
	no parity, and 1 stop bit on the remote system. If a prompt
	does not appear right away, or the prompt shows garbage, try
	pressing Enter about once per second. If
	there is still no login: prompt,
	try sending a BREAK. When using a
	high-speed modem, try dialing again after locking the
	dialing modem's interface speed.
If there is still no login: prompt, check
	/etc/gettytab again and double-check
	that:
	The initial capability name specified in the entry in
	 /etc/ttys matches the name of a
	 capability in /etc/gettytab.

	Each nx= entry matches another
	 gettytab capability name.

	Each tc= entry matches another
	 gettytab capability name.

If the modem on the FreeBSD system will not answer, make
	sure that the modem is configured to answer the phone when
	DTR is asserted. If the modem seems to be
	configured correctly, verify that the
	DTR line is asserted by checking the
	modem's indicator lights.
If it still does not work, try sending an email
	to the FreeBSD general questions mailing list describing the modem and the
	problem.
3.5. Directory Structure
The FreeBSD directory hierarchy is fundamental to obtaining
 an overall understanding of the system. The most important
 directory is root or, “/”. This directory is the
 first one mounted at boot time and it contains the base system
 necessary to prepare the operating system for multi-user
 operation. The root directory also contains mount points for
 other file systems that are mounted during the transition to
 multi-user operation.
A mount point is a directory where additional file systems
 can be grafted onto a parent file system (usually the root file
 system). This is further described in
 Section 3.6, “Disk Organization”. Standard mount points
 include /usr/, /var/,
 /tmp/, /mnt/, and
 /cdrom/. These directories are usually
 referenced to entries in /etc/fstab. This
 file is a table of various file systems and mount points and is
 read by the system. Most of the file systems in
 /etc/fstab are mounted automatically at
 boot time from the script rc(8) unless their entry includes
 noauto. Details can be found in
 Section 3.7.1, “The fstab File”.
A complete description of the file system hierarchy is
 available in hier(7). The following table provides a brief
 overview of the most common directories.

	Directory	Description
	/	Root directory of the file system.
	/bin/	User utilities fundamental to both single-user
		and multi-user environments.
	/boot/	Programs and configuration files used during
		operating system bootstrap.
	/boot/defaults/	Default boot configuration files. Refer to
		loader.conf(5) for details.
	/dev/	Device nodes. Refer to intro(4) for
		details.
	/etc/	System configuration files and scripts.
	/etc/defaults/	Default system configuration files. Refer to
		rc(8) for details.
	/etc/mail/	Configuration files for mail transport agents
		such as sendmail(8).
	/etc/periodic/	Scripts that run daily, weekly, and monthly,
		via cron(8). Refer to periodic(8) for
		details.
	/etc/ppp/	ppp(8) configuration files.
	/mnt/	Empty directory commonly used by system
		administrators as a temporary mount point.
	/proc/	Process file system. Refer to procfs(5),
		mount_procfs(8) for details.
	/rescue/	Statically linked programs for emergency
		recovery as described in rescue(8).
	/root/	Home directory for the
		root
		account.
	/sbin/	System programs and administration utilities
		fundamental to both single-user and multi-user
		environments.
	/tmp/	Temporary files which are usually
		not preserved across a system
		reboot. A memory-based file system is often mounted
		at /tmp. This can be automated
		using the tmpmfs-related variables of rc.conf(5)
		or with an entry in /etc/fstab;
		refer to mdmfs(8) for details.
	/usr/	The majority of user utilities and
		applications.
	/usr/bin/	Common utilities, programming tools, and
		applications.
	/usr/include/	Standard C include files.
	/usr/lib/	Archive libraries.
	/usr/libdata/	Miscellaneous utility data files.
	/usr/libexec/	System daemons and system utilities executed
		by other programs.
	/usr/local/	Local executables and libraries. Also used as
		the default destination for the FreeBSD ports framework.
		Within
		/usr/local, the
		general layout sketched out by hier(7) for
		/usr should be
		used. Exceptions are the man directory, which is
		directly under /usr/local rather than
		under /usr/local/share, and
		the ports documentation is in share/doc/port.
	/usr/obj/	Architecture-specific target tree produced by
		building the /usr/src
		tree.
	/usr/ports/	The FreeBSD Ports Collection (optional).
	/usr/sbin/	System daemons and system utilities executed
		by users.
	/usr/share/	Architecture-independent files.
	/usr/src/	BSD and/or local source files.
	/var/	Multi-purpose log, temporary, transient, and
		spool files. A memory-based file system is sometimes
		mounted at
		/var. This can
		be automated using the varmfs-related variables in
		rc.conf(5) or with an entry in
		/etc/fstab; refer to
		mdmfs(8) for details.
	/var/log/	Miscellaneous system log files.
	/var/mail/	User mailbox files.
	/var/spool/	Miscellaneous printer and mail system spooling
		directories.
	/var/tmp/	Temporary files which are usually preserved
		across a system reboot, unless
		/var is a
		memory-based file system.
	/var/yp/	NIS maps.

24.4. Using DTrace
DTrace scripts consist of a list of one or more
 probes, or instrumentation points, where
 each probe is associated with an action. Whenever the condition
 for a probe is met, the associated action is executed. For
 example, an action may occur when a file is opened, a process is
 started, or a line of code is executed. The action might be to
 log some information or to modify context variables. The
 reading and writing of context variables allows probes to share
 information and to cooperatively analyze the correlation of
 different events.
To view all probes, the administrator can execute the
 following command:
dtrace -l | more
Each probe has an ID, a
 PROVIDER (dtrace or fbt), a
 MODULE, and a
 FUNCTION NAME. Refer to dtrace(1) for
 more information about this command.
The examples in this section provide an overview of how to
 use two of the fully supported scripts from the
 DTrace Toolkit: the
 hotkernel and
 procsystime scripts.
The hotkernel script is designed to
 identify which function is using the most kernel time. It will
 produce output similar to the following:
cd /usr/local/share/dtrace-toolkit
./hotkernel
Sampling... Hit Ctrl-C to end.
As instructed, use the
 Ctrl+C key combination to stop the process. Upon
 termination, the script will display a list of kernel functions
 and timing information, sorting the output in increasing order
 of time:
kernel`_thread_lock_flags 2 0.0%
0xc1097063 2 0.0%
kernel`sched_userret 2 0.0%
kernel`kern_select 2 0.0%
kernel`generic_copyin 3 0.0%
kernel`_mtx_assert 3 0.0%
kernel`vm_fault 3 0.0%
kernel`sopoll_generic 3 0.0%
kernel`fixup_filename 4 0.0%
kernel`_isitmyx 4 0.0%
kernel`find_instance 4 0.0%
kernel`_mtx_unlock_flags 5 0.0%
kernel`syscall 5 0.0%
kernel`DELAY 5 0.0%
0xc108a253 6 0.0%
kernel`witness_lock 7 0.0%
kernel`read_aux_data_no_wait 7 0.0%
kernel`Xint0x80_syscall 7 0.0%
kernel`witness_checkorder 7 0.0%
kernel`sse2_pagezero 8 0.0%
kernel`strncmp 9 0.0%
kernel`spinlock_exit 10 0.0%
kernel`_mtx_lock_flags 11 0.0%
kernel`witness_unlock 15 0.0%
kernel`sched_idletd 137 0.3%
0xc10981a5 42139 99.3%
This script will also work with kernel modules. To use this
 feature, run the script with -m:
./hotkernel -m
Sampling... Hit Ctrl-C to end.
^C
MODULE COUNT PCNT
0xc107882e 1 0.0%
0xc10e6aa4 1 0.0%
0xc1076983 1 0.0%
0xc109708a 1 0.0%
0xc1075a5d 1 0.0%
0xc1077325 1 0.0%
0xc108a245 1 0.0%
0xc107730d 1 0.0%
0xc1097063 2 0.0%
0xc108a253 73 0.0%
kernel 874 0.4%
0xc10981a5 213781 99.6%
The procsystime script captures and
 prints the system call time usage for a given process
 ID (PID) or process name.
 In the following example, a new instance of
 /bin/csh was spawned. Then,
 procsystime was executed and remained
 waiting while a few commands were typed on the other incarnation
 of csh. These are the results of this
 test:
./procsystime -n csh
Tracing... Hit Ctrl-C to end...
^C

Elapsed Times for processes csh,

 SYSCALL TIME (ns)
 getpid 6131
 sigreturn 8121
 close 19127
 fcntl 19959
 dup 26955
 setpgid 28070
 stat 31899
 setitimer 40938
 wait4 62717
 sigaction 67372
 sigprocmask 119091
 gettimeofday 183710
 write 263242
 execve 492547
 ioctl 770073
 vfork 3258923
 sigsuspend 6985124
 read 3988049784
As shown, the read() system call used
 the most time in nanoseconds while the
 getpid() system call used the least amount
 of time.
17.4. USB Storage Devices
Contributed by Marc Fonvieille. Many external storage solutions, such as hard drives,
 USB thumbdrives, and CD
 and DVD burners, use the Universal Serial Bus
 (USB). FreeBSD provides support for
 USB 1.x, 2.0, and 3.0 devices.
Note:
USB 3.0 support is not compatible with
	some hardware, including Haswell (Lynx point) chipsets. If
	FreeBSD boots with a failed with error 19
	message, disable xHCI/USB3 in the system
	BIOS.

Support for USB storage devices is built
 into the GENERIC kernel. For a custom
 kernel, be sure that the following lines are present in the
 kernel configuration file:
device scbus	# SCSI bus (required for ATA/SCSI)
device da	# Direct Access (disks)
device pass	# Passthrough device (direct ATA/SCSI access)
device uhci	# provides USB 1.x support
device ohci	# provides USB 1.x support
device ehci	# provides USB 2.0 support
device xhci	# provides USB 3.0 support
device usb	# USB Bus (required)
device umass	# Disks/Mass storage - Requires scbus and da
device cd	# needed for CD and DVD burners
FreeBSD uses the umass(4) driver which uses the
 SCSI subsystem to access
 USB storage devices. Since any
 USB device will be seen as a
 SCSI device by the system, if the
 USB device is a CD or
 DVD burner, do not
 include device atapicam in a custom kernel
 configuration file.
The rest of this section demonstrates how to verify that a
 USB storage device is recognized by FreeBSD and
 how to configure the device so that it can be used.
17.4.1. Device Configuration
To test the USB configuration, plug in
	the USB device. Use
	dmesg to confirm that the drive appears in
	the system message buffer. It should look something like
	this:
umass0: <STECH Simple Drive, class 0/0, rev 2.00/1.04, addr 3> on usbus0
umass0: SCSI over Bulk-Only; quirks = 0x0100
umass0:4:0:-1: Attached to scbus4
da0 at umass-sim0 bus 0 scbus4 target 0 lun 0
da0: <STECH Simple Drive 1.04> Fixed Direct Access SCSI-4 device
da0: Serial Number WD-WXE508CAN263
da0: 40.000MB/s transfers
da0: 152627MB (312581808 512 byte sectors: 255H 63S/T 19457C)
da0: quirks=0x2<NO_6_BYTE>
The brand, device node (da0), speed,
	and size will differ according to the device.
Since the USB device is seen as a
	SCSI one, camcontrol can
	be used to list the USB storage devices
	attached to the system:
camcontrol devlist
<STECH Simple Drive 1.04> at scbus4 target 0 lun 0 (pass3,da0)
Alternately, usbconfig can be used to
	list the device. Refer to usbconfig(8) for more
	information about this command.
usbconfig
ugen0.3: <Simple Drive STECH> at usbus0, cfg=0 md=HOST spd=HIGH (480Mbps) pwr=ON (2mA)
If the device has not been formatted, refer to Section 17.2, “Adding Disks” for instructions on how to format
	and create partitions on the USB drive. If
	the drive comes with a file system, it can be mounted by
	root using the
	instructions in Section 3.7, “Mounting and Unmounting File Systems”.
Warning:
Allowing untrusted users to mount arbitrary media, by
	 enabling vfs.usermount as described
	 below, should not be considered safe from a security point
	 of view. Most file systems were not built to safeguard
	 against malicious devices.

To make the device mountable as a normal user, one
	solution is to make all users of the device a member of the
	operator group
	using pw(8). Next, ensure that operator is able to read and
	write the device by adding these lines to
	/etc/devfs.rules:
[localrules=5]
add path 'da*' mode 0660 group operator
Note:
If internal SCSI disks are also
	 installed in the system, change the second line as
	 follows:
add path 'da[3-9]*' mode 0660 group operator
This will exclude the first three
	 SCSI disks (da0 to
	 da2)from belonging to the operator group. Replace
	 3 with the number of internal
	 SCSI disks. Refer to devfs.rules(5)
	 for more information about this file.

Next, enable the ruleset in
	/etc/rc.conf:
devfs_system_ruleset="localrules"
Then, instruct the system to allow regular users to mount
	file systems by adding the following line to
	/etc/sysctl.conf:
vfs.usermount=1
Since this only takes effect after the next reboot, use
	sysctl to set this variable now:
sysctl vfs.usermount=1
vfs.usermount: 0 -> 1
The final step is to create a directory where the file
	system is to be mounted. This directory needs to be owned by
	the user that is to mount the file system. One way to do that
	is for root to
	create a subdirectory owned by that user as /mnt/username.
	In the following example, replace
	username with the login name of the
	user and usergroup with the user's
	primary group:
mkdir /mnt/username
chown username:usergroup /mnt/username
Suppose a USB thumbdrive is plugged in,
	and a device /dev/da0s1 appears. If the
	device is formatted with a FAT file system,
	the user can mount it using:
% mount -t msdosfs -o -m=644,-M=755 /dev/da0s1 /mnt/username
Before the device can be unplugged, it
	must be unmounted first:
% umount /mnt/username
After device removal, the system message buffer will show
	messages similar to the following:
umass0: at uhub3, port 2, addr 3 (disconnected)
da0 at umass-sim0 bus 0 scbus4 target 0 lun 0
da0: <STECH Simple Drive 1.04> s/n WD-WXE508CAN263 detached
(da0:umass-sim0:0:0:0): Periph destroyed
17.4.2. Automounting Removable Media
USB devices can be automatically
	mounted by uncommenting this line in
	/etc/auto_master:
/media		-media		-nosuid
Then add these lines to
	/etc/devd.conf:
notify 100 {
	match "system" "GEOM";
	match "subsystem" "DEV";
	action "/usr/sbin/automount -c";
};
Reload the configuration if autofs(5)
	and devd(8) are already running:
service automount restart
service devd restart
autofs(5) can be set to start at boot by adding this
	line to /etc/rc.conf:
autofs_enable="YES"
autofs(5) requires devd(8) to be enabled, as it
	is by default.
Start the services immediately with:
service automount start
service automountd start
service autounmountd start
service devd start
Each file system that can be automatically mounted appears
	as a directory in /media/. The directory
	is named after the file system label. If the label is
	missing, the directory is named after the device node.
The file system is transparently mounted on the first
	access, and unmounted after a period of inactivity.
	Automounted drives can also be unmounted manually:
automount -fu
This mechanism is typically used for memory cards and
	USB memory sticks. It can be used with
	any block device, including optical drives or
	iSCSI LUNs.
Chapter 17. Storage
17.1. Synopsis
This chapter covers the use of disks and storage media in
 FreeBSD. This includes SCSI and
 IDE disks, CD and
 DVD media, memory-backed disks, and
 USB storage devices.
After reading this chapter, you will know:
	How to add additional hard disks to a FreeBSD
	 system.

	How to grow the size of a disk's partition on
	 FreeBSD.

	How to configure FreeBSD to use USB
	 storage devices.

	How to use CD and
	 DVD media on a FreeBSD system.

	How to use the backup programs available under
	 FreeBSD.

	How to set up memory disks.

	What file system snapshots are and how to use them
	 efficiently.

	How to use quotas to limit disk space usage.

	How to encrypt disks and swap to secure them against
	 attackers.

	How to configure a highly available storage
	 network.

Before reading this chapter, you should:
	Know how to configure and
	 install a new FreeBSD kernel.

26.2. Serial Terminology and Hardware
The following terms are often used in serial
 communications:
	bps
	Bits per
	 Second
	 (bps) is the rate at which data is
	 transmitted.

	DTE
	Data Terminal
	 Equipment
	 (DTE) is one of two endpoints in a
	 serial communication. An example would be a
	 computer.

	DCE
	Data Communications
	 Equipment
	 (DTE) is the other endpoint in a
	 serial communication. Typically, it is a modem or serial
	 terminal.

	RS-232
	The original standard which defined hardware serial
	 communications. It has since been renamed to
	 TIA-232.

When referring to communication data rates, this section
 does not use the term baud. Baud refers
 to the number of electrical state transitions made in a period
 of time, while bps is the correct term to
 use.
To connect a serial terminal to a FreeBSD system, a serial port
 on the computer and the proper cable to connect to the serial
 device are needed. Users who are already familiar with serial
 hardware and cabling can safely skip this section.
26.2.1. Serial Cables and Ports
There are several different kinds of serial cables. The
	two most common types are null-modem cables and standard
	RS-232 cables. The documentation for the
	hardware should describe the type of cable required.
These two types of cables differ in how the wires are
	connected to the connector. Each wire represents a signal,
	with the defined signals summarized in Table 26.1, “RS-232C Signal Names”. A standard serial
	cable passes all of the RS-232C signals
	straight through. For example, the “Transmitted
	 Data” pin on one end of the cable goes to the
	“Transmitted Data” pin on the other end. This is
	the type of cable used to connect a modem to the FreeBSD system,
	and is also appropriate for some terminals.
A null-modem cable switches the “Transmitted
	 Data” pin of the connector on one end with the
	“Received Data” pin on the other end. The
	connector can be either a DB-25 or a
	DB-9.
A null-modem cable can be constructed using the pin
	connections summarized in Table 26.2, “DB-25 to DB-25 Null-Modem Cable”,
	Table 26.3, “DB-9 to DB-9 Null-Modem Cable”, and Table 26.4, “DB-9 to DB-25 Null-Modem Cable”. While the standard calls for
	a straight-through pin 1 to pin 1 “Protective
	 Ground” line, it is often omitted. Some terminals
	work using only pins 2, 3, and 7, while others require
	different configurations. When in doubt, refer to the
	documentation for the hardware.
Table 26.1. RS-232C Signal Names
	Acronyms	Names
	RD	Received Data
	TD	Transmitted Data
	DTR	Data Terminal Ready
	DSR	Data Set Ready
	DCD	Data Carrier Detect
	SG	Signal Ground
	RTS	Request to Send
	CTS	Clear to Send

Table 26.2. DB-25 to DB-25 Null-Modem Cable
	Signal	Pin #	 	Pin #	Signal
	SG	7	connects to	7	SG
	TD	2	connects to	3	RD
	RD	3	connects to	2	TD
	RTS	4	connects to	5	CTS
	CTS	5	connects to	4	RTS
	DTR	20	connects to	6	DSR
	DTR	20	connects to	8	DCD
	DSR	6	connects to	20	DTR
	DCD	8	connects to	20	DTR

Table 26.3. DB-9 to DB-9 Null-Modem Cable
	Signal	Pin #	 	Pin #	Signal
	RD	2	connects to	3	TD
	TD	3	connects to	2	RD
	DTR	4	connects to	6	DSR
	DTR	4	connects to	1	DCD
	SG	5	connects to	5	SG
	DSR	6	connects to	4	DTR
	DCD	1	connects to	4	DTR
	RTS	7	connects to	8	CTS
	CTS	8	connects to	7	RTS

Table 26.4. DB-9 to DB-25 Null-Modem Cable
	Signal	Pin #	 	Pin #	Signal
	RD	2	connects to	2	TD
	TD	3	connects to	3	RD
	DTR	4	connects to	6	DSR
	DTR	4	connects to	8	DCD
	SG	5	connects to	7	SG
	DSR	6	connects to	20	DTR
	DCD	1	connects to	20	DTR
	RTS	7	connects to	5	CTS
	CTS	8	connects to	4	RTS

Note:
When one pin at one end connects to a pair of pins at
	 the other end, it is usually implemented with one short wire
	 between the pair of pins in their connector and a long wire
	 to the other single pin.

Serial ports are the devices through which data is
	transferred between the FreeBSD host computer and the terminal.
	Several kinds of serial ports exist. Before purchasing or
	constructing a cable, make sure it will fit the ports on the
	terminal and on the FreeBSD system.
Most terminals have DB-25 ports.
	Personal computers may have DB-25 or
	DB-9 ports. A multiport serial card may
	have RJ-12 or RJ-45/
	ports. See the documentation that accompanied the hardware
	for specifications on the kind of port or visually verify the
	type of port.
In FreeBSD, each serial port is accessed through an entry in
	/dev. There are two different kinds of
	entries:
	Call-in ports are named
	 /dev/ttyuN
	 where N is the port number,
	 starting from zero. If a terminal is connected to the
	 first serial port (COM1), use
	 /dev/ttyu0 to refer to the terminal.
	 If the terminal is on the second serial port
	 (COM2), use
	 /dev/ttyu1, and so forth. Generally,
	 the call-in port is used for terminals. Call-in ports
	 require that the serial line assert the “Data
	 Carrier Detect” signal to work correctly.

	Call-out ports are named
	 /dev/cuauN
	 on FreeBSD versions 8.X and higher and
	 /dev/cuadN
	 on FreeBSD versions 7.X and lower. Call-out ports are
	 usually not used for terminals, but are used for modems.
	 The call-out port can be used if the serial cable or the
	 terminal does not support the “Data Carrier
	 Detect” signal.

FreeBSD also provides initialization devices
	(/dev/ttyuN.init
	and
	/dev/cuauN.init
	or
	/dev/cuadN.init)
	and locking devices
	(/dev/ttyuN.lock
	and
	/dev/cuauN.lock
	or
	/dev/cuadN.lock).
	The initialization devices are used to initialize
	communications port parameters each time a port is opened,
	such as crtscts for modems which use
	RTS/CTS signaling for flow control. The
	locking devices are used to lock flags on ports to prevent
	users or programs changing certain parameters. Refer to
	termios(4), sio(4), and stty(1) for information
	on terminal settings, locking and initializing devices, and
	setting terminal options, respectively.
26.2.2. Serial Port Configuration
By default, FreeBSD supports four serial ports which are
	commonly known as COM1,
	COM2, COM3, and
	COM4. FreeBSD also supports dumb multi-port
	serial interface cards, such as the BocaBoard 1008 and 2016,
	as well as more intelligent multi-port cards such as those
	made by Digiboard. However, the default kernel only looks for
	the standard COM ports.
To see if the system recognizes the serial ports, look for
	system boot messages that start with
	uart:
grep uart /var/run/dmesg.boot
If the system does not recognize all of the needed serial
	ports, additional entries can be added to
	/boot/device.hints. This file already
	contains hint.uart.0.* entries for
	COM1 and hint.uart.1.*
	entries for COM2. When adding a port
	entry for COM3 use
	0x3E8, and for COM4
	use 0x2E8. Common IRQ
	addresses are 5 for
	COM3 and 9 for
	COM4.
To determine the default set of terminal
	I/O settings used by the port, specify its
	device name. This example determines the settings for the
	call-in port on COM2:
stty -a -f /dev/ttyu1
System-wide initialization of serial devices is controlled
	by /etc/rc.d/serial. This file affects
	the default settings of serial devices. To change the
	settings for a device, use stty. By
	default, the changed settings are in effect until the device
	is closed and when the device is reopened, it goes back to the
	default set. To permanently change the default set, open and
	adjust the settings of the initialization device. For
	example, to turn on CLOCAL mode, 8 bit
	communication, and XON/XOFF flow control for
	ttyu5, type:
stty -f /dev/ttyu5.init clocal cs8 ixon ixoff
To prevent certain settings from being changed by an
	application, make adjustments to the locking device. For
	example, to lock the speed of ttyu5 to
	57600 bps, type:
stty -f /dev/ttyu5.lock 57600
Now, any application that opens ttyu5
	and tries to change the speed of the port will be stuck with
	57600 bps.
16.3. Audit Configuration
User space support for event auditing is installed as part
 of the base FreeBSD operating system. Kernel support is available
 in the GENERIC kernel by default,
 and auditd(8) can be enabled
 by adding the following line to
 /etc/rc.conf:
auditd_enable="YES"
Then, start the audit daemon:
service auditd start
Users who prefer to compile a custom kernel must include the
 following line in their custom kernel configuration file:
options	AUDIT
16.3.1. Event Selection Expressions
Selection expressions are used in a number of places in
	the audit configuration to determine which events should be
	audited. Expressions contain a list of event classes to
	match. Selection expressions are evaluated from left to
	right, and two expressions are combined by appending one onto
	the other.
Table 16.1, “Default Audit Event Classes” summarizes the default
	audit event classes:
Table 16.1. Default Audit Event Classes
	Class Name	Description	Action
	all	all	Match all event classes.
	aa	authentication and authorization	
	ad	administrative	Administrative actions performed on the system as
		a whole.
	ap	application	Application defined action.
	cl	file close	Audit calls to the
		close system call.
	ex	exec	Audit program execution. Auditing of command
		line arguments and environmental variables is
		controlled via audit_control(5) using the
		argv and envv
		parameters to the policy
		setting.
	fa	file attribute access	Audit the access of object attributes such as
		stat(1) and pathconf(2).
	fc	file create	Audit events where a file is created as a
		result.
	fd	file delete	Audit events where file deletion occurs.
	fm	file attribute modify	Audit events where file attribute modification
		occurs, such as by chown(8), chflags(1), and
		flock(2).
	fr	file read	Audit events in which data is read or files are
		opened for reading.
	fw	file write	Audit events in which data is written or files
		are written or modified.
	io	ioctl	Audit use of the ioctl
		system call.
	ip	ipc	Audit various forms of Inter-Process
		Communication, including POSIX pipes and System V
		IPC operations.
	lo	login_logout	Audit login(1) and logout(1)
		events.
	na	non attributable	Audit non-attributable events.
	no	invalid class	Match no audit events.
	nt	network	Audit events related to network actions such as
		connect(2) and accept(2).
	ot	other	Audit miscellaneous events.
	pc	process	Audit process operations such as exec(3) and
		exit(3).

These audit event classes may be customized by modifying
	the audit_class and
	audit_event configuration files.
Each audit event class may be combined with a prefix
	indicating whether successful/failed operations are matched,
	and whether the entry is adding or removing matching for the
	class and type. Table 16.2, “Prefixes for Audit Event Classes” summarizes
	the available prefixes:
Table 16.2. Prefixes for Audit Event Classes
	Prefix	Action
	+	Audit successful events in this class.
	-	Audit failed events in this class.
	^	Audit neither successful nor failed events in
		this class.
	^+	Do not audit successful events in this
		class.
	^-	Do not audit failed events in this class.

If no prefix is present, both successful and failed
	instances of the event will be audited.
The following example selection string selects both
	successful and failed login/logout events, but only successful
	execution events:
lo,+ex
16.3.2. Configuration Files
The following configuration files for security event
	auditing are found in
	/etc/security:
	audit_class: contains the
	 definitions of the audit classes.

	audit_control: controls aspects
	 of the audit subsystem, such as default audit classes,
	 minimum disk space to leave on the audit log volume, and
	 maximum audit trail size.

	audit_event: textual names and
	 descriptions of system audit events and a list of which
	 classes each event is in.

	audit_user: user-specific audit
	 requirements to be combined with the global defaults at
	 login.

	audit_warn: a customizable shell
	 script used by auditd(8) to generate warning messages
	 in exceptional situations, such as when space for audit
	 records is running low or when the audit trail file has
	 been rotated.

Warning:
Audit configuration files should be edited and
	 maintained carefully, as errors in configuration may result
	 in improper logging of events.

In most cases, administrators will only need to modify
	audit_control and
	audit_user. The first file controls
	system-wide audit properties and policies and the second file
	may be used to fine-tune auditing by user.
16.3.2.1. The audit_control File
A number of defaults for the audit subsystem are
	 specified in audit_control:
dir:/var/audit
dist:off
flags:lo,aa
minfree:5
naflags:lo,aa
policy:cnt,argv
filesz:2M
expire-after:10M
The dir entry is used to set one or
	 more directories where audit logs will be stored. If more
	 than one directory entry appears, they will be used in order
	 as they fill. It is common to configure audit so that audit
	 logs are stored on a dedicated file system, in order to
	 prevent interference between the audit subsystem and other
	 subsystems if the file system fills.
If the dist field is set to
	 on or yes, hard links
	 will be created to all trail files in
	 /var/audit/dist.
The flags field sets the system-wide
	 default preselection mask for attributable events. In the
	 example above, successful and failed login/logout events as
	 well as authentication and authorization are audited for all
	 users.
The minfree entry defines the minimum
	 percentage of free space for the file system where the audit
	 trail is stored.
The naflags entry specifies audit
	 classes to be audited for non-attributed events, such as the
	 login/logout process and authentication and
	 authorization.
The policy entry specifies a
	 comma-separated list of policy flags controlling various
	 aspects of audit behavior. The cnt
	 indicates that the system should continue running despite an
	 auditing failure (this flag is highly recommended). The
	 other flag, argv, causes command line
	 arguments to the execve(2) system call to be audited as
	 part of command execution.
The filesz entry specifies the maximum
	 size for an audit trail before automatically terminating and
	 rotating the trail file. A value of 0
	 disables automatic log rotation. If the requested file size
	 is below the minimum of 512k, it will be ignored and a log
	 message will be generated.
The expire-after field specifies when
	 audit log files will expire and be removed.
16.3.2.2. The audit_user File
The administrator can specify further audit requirements
	 for specific users in audit_user.
	 Each line configures auditing for a user via two fields:
	 the alwaysaudit field specifies a set of
	 events that should always be audited for the user, and the
	 neveraudit field specifies a set of
	 events that should never be audited for the user.
The following example entries audit login/logout events
	 and successful command execution for root and file creation and
	 successful command execution for www. If used with the
	 default audit_control, the
	 lo entry for root is redundant, and
	 login/logout events will also be audited for www.
root:lo,+ex:no
www:fc,+ex:no
9.5. LPD (Line Printer Daemon)
Printing a file in the background is called
 spooling. A spooler allows the user to
 continue with other programs on the computer without waiting for
 the printer to slowly complete the print job.
FreeBSD includes a spooler called lpd(8). Print jobs are
 submitted with lpr(1).
9.5.1. Initial Setup
A directory for storing print jobs is created, ownership
	is set, and the permissions are set to prevent other users
	from viewing the contents of those files:
mkdir -p /var/spool/lpd/lp
chown daemon:daemon /var/spool/lpd/lp
chmod 770 /var/spool/lpd/lp
Printers are defined in
	/etc/printcap. An entry for each printer
	includes details like a name, the port where it is attached,
	and various other settings. Create
	/etc/printcap with these contents:
lp:\				[image: 1]
	:lp=/dev/unlpt0:\	[image: 2]
	:sh:\			[image: 3]
	:mx#0:\			[image: 4]
	:sd=/var/spool/lpd/lp:\	[image: 5]
	:lf=/var/log/lpd-errs:	[image: 6]
	[image: 1]
	The name of this printer. lpr(1) sends print
	 jobs to the lp printer unless another
	 printer is specified with -P, so the
	 default printer should be named
	 lp.

	[image: 2]
	The device where the printer is connected. Replace
	 this line with the appropriate one for the connection type
	 shown here.
	Connection Type	Device Entry in
		 /etc/printcap
	USB	:lp=/dev/unlpt0:\

		 This is the
		 non-resetting
		 USB printer device. If
		 problems are experienced, use
		 ulpt0 instead, which resets
		 the USB port on each
		 use.

	Parallel	:lp=/dev/lpt0:\

	Network	For a printer supporting the
		 LPD protocol:

		 :lp=:rm=network-printer-name:rp=raw:\

		 For printers supporting port 9100
		 printing:

		 :lp=9100@network-printer-name:\

		 For both types, replace
		 network-printer-name
		 with the DNS host name of the
		 network printer.

	Serial	:lp=/dev/cuau0:br=9600:pa=none:\

		 These values are for a typical serial
		 printer connected to a motherboard serial port.
		 The baud rate is 9600, and no parity is
		 used.

	[image: 3]
	Suppress the printing of a header page at the start of
	 a print job.

	[image: 4]
	Do not limit the maximum size of a print job.

	[image: 5]
	The path to the spooling directory for this printer.
	 Each printer uses its own spooling directory.

	[image: 6]
	The log file where errors on this printer will be
	 reported.

After creating /etc/printcap, use
	chkprintcap(8) to test it for errors:
chkprintcap
Fix any reported problems before continuing.
Enable lpd(8) in
	/etc/rc.conf:
lpd_enable="YES"
Start the service:
service lpd start
9.5.2. Printing with lpr(1)
Documents are sent to the printer with
	lpr. A file to be printed can be named on
	the command line or piped into lpr. These
	two commands are equivalent, sending the contents of
	doc.txt to the default printer:
% lpr doc.txt
% cat doc.txt | lpr
Printers can be selected with -P. To
	print to a printer called
	laser:
% lpr -Plaser doc.txt
9.5.3. Filters
The examples shown so far have sent the contents of a text
	file directly to the printer. As long as the printer
	understands the content of those files, output will be printed
	correctly.
Some printers are not capable of printing plain text, and
	the input file might not even be plain text.
Filters allow files to be
	translated or processed. The typical use is to translate one
	type of input, like plain text, into a form that the printer
	can understand, like PostScript® or PCL.
	Filters can also be used to provide additional features, like
	adding page numbers or highlighting source code to make it
	easier to read.
The filters discussed here are
	input filters or
	text filters. These filters convert the
	incoming file into different forms. Use su(1) to become
	root before
	creating the files.
Filters are specified in
	/etc/printcap with the
	if= identifier. To use
	/usr/local/libexec/lf2crlf as a filter,
	modify /etc/printcap like this:
lp:\
	:lp=/dev/unlpt0:\
	:sh:\
	:mx#0:\
	:sd=/var/spool/lpd/lp:\
	:if=/usr/local/libexec/lf2crlf:\ [image: 1]
	:lf=/var/log/lpd-errs:
	[image: 1]
	if= identifies the
	 input filter that will be used on
	 incoming text.

Tip:
The backslash line continuation
	 characters at the end of the lines in
	 printcap entries reveal that an entry
	 for a printer is really just one long line with entries
	 delimited by colon characters. An earlier example can be
	 rewritten as a single less-readable line:
lp:lp=/dev/unlpt0:sh:mx#0:sd=/var/spool/lpd/lp:if=/usr/local/libexec/lf2crlf:lf=/var/log/lpd-errs:

9.5.3.1. Preventing Stairstepping on Plain Text Printers
Typical FreeBSD text files contain only a single line feed
	 character at the end of each line. These lines will
	 “stairstep” on a standard printer:
A printed file looks
 like the steps of a staircase
 scattered by the wind
A filter can convert the newline characters into
	 carriage returns and newlines. The carriage returns make
	 the printer return to the left after each line. Create
	 /usr/local/libexec/lf2crlf with these
	 contents:
#!/bin/sh
CR=$'\r'
/usr/bin/sed -e "s/$/${CR}/g"
Set the permissions and make it executable:
chmod 555 /usr/local/libexec/lf2crlf
Modify /etc/printcap to use the
	 new filter:
:if=/usr/local/libexec/lf2crlf:\
Test the filter by printing the same plain text file.
	 The carriage returns will cause each line to start at the
	 left side of the page.
9.5.3.2. Fancy Plain Text on PostScript® Printers with
	 print/enscript
GNU
	 Enscript converts plain text
	 files into nicely-formatted PostScript® for printing on
	 PostScript® printers. It adds page numbers, wraps long
	 lines, and provides numerous other features to make printed
	 text files easier to read. Depending on the local paper
	 size, install either
	 print/enscript-letter or
	 print/enscript-a4 from the
	 Ports Collection.
Create /usr/local/libexec/enscript
	 with these contents:
#!/bin/sh
/usr/local/bin/enscript -o -
Set the permissions and make it executable:
chmod 555 /usr/local/libexec/enscript
Modify /etc/printcap to use the
	 new filter:
:if=/usr/local/libexec/enscript:\
Test the filter by printing a plain text file.
9.5.3.3. Printing PostScript® to
	 PCL Printers
Many programs produce PostScript® documents.
	 However, inexpensive printers often only understand plain
	 text or PCL. This filter converts
	 PostScript® files to PCL before sending
	 them to the printer.
Install the Ghostscript PostScript® interpreter,
	 print/ghostscript9-base,
	 from the Ports Collection.
Create /usr/local/libexec/ps2pcl
	 with these contents:
#!/bin/sh
/usr/local/bin/gs -dSAFER -dNOPAUSE -dBATCH -q -sDEVICE=ljet4 -sOutputFile=- -
Set the permissions and make it executable:
chmod 555 /usr/local/libexec/ps2pcl
PostScript® input sent to this script will be rendered
	 and converted to PCL before being sent on
	 to the printer.
Modify /etc/printcap to use this
	 new input filter:
:if=/usr/local/libexec/ps2pcl:\
Test the filter by sending a small PostScript® program
	 to it:
% printf "%%\!PS \n /Helvetica findfont 18 scalefont setfont \
72 432 moveto (PostScript printing successful.) show showpage \004" | lpr
9.5.3.4. Smart Filters
A filter that detects the type of input and
	 automatically converts it to the correct format for the
	 printer can be very convenient. The first two characters of
	 a PostScript® file are usually %!. A
	 filter can detect those two characters. PostScript® files
	 can be sent on to a PostScript® printer unchanged. Text
	 files can be converted to PostScript® with
	 Enscript as shown earlier.
	 Create /usr/local/libexec/psif with
	 these contents:
#!/bin/sh
#
psif - Print PostScript or plain text on a PostScript printer
#
IFS="" read -r first_line
first_two_chars=`expr "$first_line" : '\(..\)'`

case "$first_two_chars" in
%!)
 # %! : PostScript job, print it.
 echo "$first_line" && cat && exit 0
 exit 2
 ;;
*)
 # otherwise, format with enscript
 (echo "$first_line"; cat) | /usr/local/bin/enscript -o - && exit 0
 exit 2
 ;;
esac
Set the permissions and make it executable:
chmod 555 /usr/local/libexec/psif
Modify /etc/printcap to use this
	 new input filter:
:if=/usr/local/libexec/psif:\
Test the filter by printing PostScript® and plain text
	 files.
9.5.3.5. Other Smart Filters
Writing a filter that detects many different types of
	 input and formats them correctly is challenging.
	 print/apsfilter from the
	 Ports Collection is a smart “magic” filter that
	 detects dozens of file types and automatically converts them
	 to the PDL understood by the printer.
	 See http://www.apsfilter.org for
	 more details.
9.5.4. Multiple Queues
The entries in /etc/printcap are
	really definitions of queues. There can
	be more than one queue for a single printer. When combined
	with filters, multiple queues provide users more control over
	how their jobs are printed.
As an example, consider a networked PostScript® laser
	printer in an office. Most users want to print plain text,
	but a few advanced users want to be able to print PostScript®
	files directly. Two entries can be created for the same
	printer in /etc/printcap:
textprinter:\
	:lp=9100@officelaser:\
	:sh:\
	:mx#0:\
	:sd=/var/spool/lpd/textprinter:\
	:if=/usr/local/libexec/enscript:\
	:lf=/var/log/lpd-errs:

psprinter:\
	:lp=9100@officelaser:\
	:sh:\
	:mx#0:\
	:sd=/var/spool/lpd/psprinter:\
	:lf=/var/log/lpd-errs:
Documents sent to textprinter will be
	formatted by the
	/usr/local/libexec/enscript filter shown
	in an earlier example. Advanced users can print PostScript®
	files on psprinter, where no filtering is
	done.
This multiple queue technique can be used to provide
	direct access to all kinds of printer features. A printer
	with a duplexer could use two queues, one for ordinary
	single-sided printing, and one with a filter that sends the
	command sequence to enable double-sided printing and then
	sends the incoming file.
9.5.5. Monitoring and Controlling Printing
Several utilities are available to monitor print jobs and
	check and control printer operation.
9.5.5.1. lpq(1)
lpq(1) shows the status of a user's print
	 jobs. Print jobs from other users are not shown.
Show the current user's pending jobs on a single
	 printer:
% lpq -Plp
Rank Owner Job Files Total Size
1st jsmith 0 (standard input) 12792 bytes
Show the current user's pending jobs on all
	 printers:
% lpq -a
lp:
Rank Owner Job Files Total Size
1st jsmith 1 (standard input) 27320 bytes

laser:
Rank Owner Job Files Total Size
1st jsmith 287 (standard input) 22443 bytes
9.5.5.2. lprm(1)
lprm(1) is used to remove print jobs. Normal users
	 are only allowed to remove their own jobs.
	 root can remove
	 any or all jobs.
Remove all pending jobs from a printer:
lprm -Plp -
dfA002smithy dequeued
cfA002smithy dequeued
dfA003smithy dequeued
cfA003smithy dequeued
dfA004smithy dequeued
cfA004smithy dequeued
Remove a single job from a
	 printer. lpq(1) is used to find the job number.
% lpq
Rank Owner Job Files Total Size
1st jsmith 5 (standard input) 12188 bytes
% lprm -Plp 5
dfA005smithy dequeued
cfA005smithy dequeued
9.5.5.3. lpc(8)
lpc(8) is used to check and modify printer status.
	 lpc is followed by a command and an
	 optional printer name. all can be used
	 instead of a specific printer name, and the command will be
	 applied to all printers. Normal users can view status with
	 lpc(8). Only
	 root can use
	 commands which modify printer status.
Show the status of all printers:
% lpc status all
lp:
	queuing is enabled
	printing is enabled
	1 entry in spool area
	printer idle
laser:
	queuing is enabled
	printing is enabled
	1 entry in spool area
	waiting for laser to come up
Prevent a printer from accepting new jobs, then begin
	 accepting new jobs again:
lpc disable lp
lp:
	queuing disabled
lpc enable lp
lp:
	queuing enabled
Stop printing, but continue to accept new jobs. Then
	 begin printing again:
lpc stop lp
lp:
	printing disabled
lpc start lp
lp:
	printing enabled
	daemon started
Restart a printer after some error condition:
lpc restart lp
lp:
	no daemon to abort
	printing enabled
	daemon restarted
Turn the print queue off and disable printing, with a
	 message to explain the problem to users:
lpc down lp Repair parts will arrive on Monday
lp:
	printer and queuing disabled
	status message is now: Repair parts will arrive on Monday
Re-enable a printer that is down:
lpc up lp
lp:
	printing enabled
	daemon started
See lpc(8) for more commands and options.
9.5.6. Shared Printers
Printers are often shared by multiple users in businesses
	and schools. Additional features are provided to make sharing
	printers more convenient.
9.5.6.1. Aliases
The printer name is set in the first line of the
	 entry in /etc/printcap. Additional
	 names, or aliases, can be added after
	 that name. Aliases are separated from the name and each
	 other by vertical bars:
lp|repairsprinter|salesprinter:\
Aliases can be used in place of the printer name. For
	 example, users in the Sales department print to their
	 printer with
% lpr -Psalesprinter sales-report.txt
Users in the Repairs department print to
	 their printer with
% lpr -Prepairsprinter repairs-report.txt
All of the documents print on that single printer. When
	 the Sales department grows enough to need their own printer,
	 the alias can be removed from the shared printer entry and
	 used as the name of a new printer. Users in both
	 departments continue to use the same commands, but the Sales
	 documents are sent to the new printer.
9.5.6.2. Header Pages
It can be difficult for users to locate their documents
	 in the stack of pages produced by a busy shared printer.
	 Header pages were created to solve this
	 problem. A header page with the user name and document name
	 is printed before each print job. These pages are also
	 sometimes called banner or
	 separator pages.
Enabling header pages differs depending on whether the
	 printer is connected directly to the computer with a
	 USB, parallel, or serial cable, or
	 is connected remotely over a network.
Header pages on directly-connected printers are enabled
	 by removing the :sh:\ (Suppress Header)
	 line from the entry in /etc/printcap.
	 These header pages only use line feed characters for new
	 lines. Some printers will need the
	 /usr/share/examples/printing/hpif
	 filter to prevent stairstepped text. The filter configures
	 PCL printers to print both carriage
	 returns and line feeds when a line feed is received.
Header pages for network printers must be configured on
	 the printer itself. Header page entries in
	 /etc/printcap are ignored. Settings
	 are usually available from the printer front panel or a
	 configuration web page accessible with a web browser.
9.5.7. References
Example files: /usr/share/examples/printing/.
The 4.3BSD Line Printer Spooler
	 Manual,
	/usr/share/doc/smm/07.lpd/paper.ascii.gz.
Manual pages: printcap(5), lpd(8), lpr(1),
	lpc(8), lprm(1), lpq(1).
5.9. Troubleshooting
If the mouse does not work, you will need to first configure
 it before proceeding.
 In recent Xorg
 versions, the InputDevice sections in
 xorg.conf are ignored in favor of the
 autodetected devices. To restore the old behavior, add the
 following line to the ServerLayout or
 ServerFlags section of this file:
Option "AutoAddDevices" "false"
Input devices may then be configured as in previous
	versions, along with any other options needed (e.g., keyboard
	layout switching).
Note:
As previously explained the
	 hald daemon will, by default,
	 automatically detect your keyboard. There are chances that
	 your keyboard layout or model will not be correct, desktop
	 environments like GNOME,
	 KDE or
	 Xfce provide tools to configure
	 the keyboard. However, it is possible to set the keyboard
	 properties directly either with the help of the
	 setxkbmap(1) utility or with a
	 hald's configuration rule.
For example if, one wants to use a PC 102 keys keyboard
	 coming with a french layout, we have to create a keyboard
	 configuration file for hald
	 called x11-input.fdi and saved in the
	 /usr/local/etc/hal/fdi/policy
	 directory. This file should contain the following
	 lines:
<?xml version="1.0" encoding="iso-8859-1"?>
<deviceinfo version="0.2">
 <device>
 <match key="info.capabilities" contains="input.keyboard">
	 <merge key="input.x11_options.XkbModel" type="string">pc102</merge>
	 <merge key="input.x11_options.XkbLayout" type="string">fr</merge>
 </match>
 </device>
</deviceinfo>
If this file already exists, just copy and add to your
	 file the lines regarding the keyboard configuration.
You will have to reboot your machine to force
	 hald to read this file.
It is possible to do the same configuration from an X
	 terminal or a script with this command line:
% setxkbmap -model pc102 -layout fr
/usr/local/share/X11/xkb/rules/base.lst
	 lists the various keyboard, layouts and options
	 available.

The xorg.conf.new configuration file
	may now be tuned to taste. Open the file in a text editor
	such as emacs(1) or ee(1). If the monitor is an
	older or unusual model that does not support autodetection of
	sync frequencies, those settings can be added to
	xorg.conf.new under the
	"Monitor" section:
Section "Monitor"
	Identifier "Monitor0"
	VendorName "Monitor Vendor"
	ModelName "Monitor Model"
	HorizSync 30-107
	VertRefresh 48-120
EndSection
Most monitors support sync frequency autodetection, making
	manual entry of these values unnecessary. For the few
	monitors that do not support autodetection, avoid potential
	damage by only entering values provided by the
	manufacturer.
X allows DPMS (Energy Star) features to be used with
	capable monitors. The xset(1) program controls the
	time-outs and can force standby, suspend, or off modes. If
	you wish to enable DPMS features for your monitor, you must
	add the following line to the monitor section:
Option "DPMS"
While the xorg.conf.new configuration
	file is still open in an editor, select the default resolution
	and color depth desired. This is defined in the
	"Screen" section:
Section "Screen"
	Identifier "Screen0"
	Device "Card0"
	Monitor "Monitor0"
	DefaultDepth 24
	SubSection "Display"
		Viewport 0 0
		Depth 24
		Modes "1024x768"
	EndSubSection
EndSection
The DefaultDepth keyword describes the
	color depth to run at by default. This can be overridden with
	the -depth command line switch to
	Xorg(1). The Modes keyword describes
	the resolution to run at for the given color depth. Note that
	only VESA standard modes are supported as defined by the
	target system's graphics hardware. In the example above, the
	default color depth is twenty-four bits per pixel. At this
	color depth, the accepted resolution is 1024 by 768
	pixels.
Finally, write the configuration file and test it using
	the test mode given above.
Note:
One of the tools available to assist you during
	 troubleshooting process are the
	 Xorg log files, which contain
	 information on each device that the
	 Xorg server attaches to.
	 Xorg log file names are in the
	 format of /var/log/Xorg.0.log. The
	 exact name of the log can vary from
	 Xorg.0.log to
	 Xorg.8.log and so forth.

If all is well, the configuration file needs to be
	installed in a common location where Xorg(1) can find it.
	This is typically /etc/X11/xorg.conf or
	/usr/local/etc/X11/xorg.conf.
cp xorg.conf.new /etc/X11/xorg.conf
The Xorg configuration
	process is now complete. Xorg
	may be now started with the startx(1) utility. The
	Xorg server may also be started
	with the use of xdm(1).
5.9.1. Configuration with Intel® i810
	 Graphics Chipsets
Configuration with Intel® i810 integrated chipsets
	 requires the agpgart AGP programming
	 interface for Xorg to drive the
	 card. See the agp(4) driver manual page for more
	 information.
This will allow configuration of the hardware as any
	 other graphics board. Note on systems without the
	 agp(4) driver compiled in the kernel, trying to load
	 the module with kldload(8) will not work. This driver
	 has to be in the kernel at boot time through being compiled
	 in or using /boot/loader.conf.
5.9.2. Adding a Widescreen Flatpanel to the Mix
This section assumes a bit of advanced configuration
	 knowledge. If attempts to use the standard configuration
	 tools above have not resulted in a working configuration,
	 there is information enough in the log files to be of use in
	 getting the setup working. Use of a text editor will be
	 necessary.
Current widescreen (WSXGA, WSXGA+, WUXGA, WXGA, WXGA+,
	 et.al.) formats support 16:10 and 10:9 formats or aspect
	 ratios that can be problematic. Examples of some common
	 screen resolutions for 16:10 aspect ratios are:
	2560x1600

	1920x1200

	1680x1050

	1440x900

	1280x800

At some point, it will be as easy as adding one of these
	 resolutions as a possible Mode in the
	 Section "Screen" as such:
Section "Screen"
Identifier "Screen0"
Device "Card0"
Monitor "Monitor0"
DefaultDepth 24
SubSection "Display"
	Viewport 0 0
	Depth 24
	Modes "1680x1050"
EndSubSection
EndSection
Xorg is smart enough to
	 pull the resolution information from the widescreen via
	 I2C/DDC information so it knows what the monitor can handle
	 as far as frequencies and resolutions.
If those ModeLines do not exist in
	 the drivers, one might need to give
	 Xorg a little hint. Using
	 /var/log/Xorg.0.log one can extract
	 enough information to manually create a
	 ModeLine that will work. Simply look for
	 information resembling this:
(II) MGA(0): Supported additional Video Mode:
(II) MGA(0): clock: 146.2 MHz Image Size: 433 x 271 mm
(II) MGA(0): h_active: 1680 h_sync: 1784 h_sync_end 1960 h_blank_end 2240 h_border: 0
(II) MGA(0): v_active: 1050 v_sync: 1053 v_sync_end 1059 v_blanking: 1089 v_border: 0
(II) MGA(0): Ranges: V min: 48 V max: 85 Hz, H min: 30 H max: 94 kHz, PixClock max 170 MHz
This information is called EDID information. Creating a
	 ModeLine from this is just a matter of
	 putting the numbers in the correct order:
ModeLine <name> <clock> <4 horiz. timings> <4 vert. timings>
So that the ModeLine in
	 Section "Monitor" for this example would
	 look like this:
Section "Monitor"
Identifier "Monitor1"
VendorName "Bigname"
ModelName "BestModel"
ModeLine "1680x1050" 146.2 1680 1784 1960 2240 1050 1053 1059 1089
Option "DPMS"
EndSection
Now having completed these simple editing steps, X
	 should start on your new widescreen monitor.
5.9.3. Troubleshooting Compiz Fusion
	5.9.3.1.
	I have installed
		Compiz Fusion, and
		after running the commands you mention, my windows are
		left without title bars and buttons. What is
		wrong?

		You are probably missing a setting in
		/etc/X11/xorg.conf. Review this
		file carefully and check especially the
		DefaultDepth and
		AddARGBGLXVisuals
		directives.

	5.9.3.2.
	When I run the command to start
		Compiz Fusion, the X
		server crashes and I am back at the console. What is
		wrong?

		If you check
		/var/log/Xorg.0.log, you
		will probably find error messages during the X
		startup. The most common would be:
(EE) NVIDIA(0): Failed to initialize the GLX module; please check in your X
(EE) NVIDIA(0): log file that the GLX module has been loaded in your X
(EE) NVIDIA(0): server, and that the module is the NVIDIA GLX module. If
(EE) NVIDIA(0): you continue to encounter problems, Please try
(EE) NVIDIA(0): reinstalling the NVIDIA driver.
This is usually the case when you upgrade
	 Xorg. You will need to
	 reinstall the x11/nvidia-driver
	 package so glx is built again.

15.8. Troubleshooting the MAC Framework
This section discusses common configuration errors and how
 to resolve them.
	The multilabel flag does not stay
	 enabled on the root (/)
	 partition:
	The following steps may resolve this transient
	 error:
	Edit /etc/fstab and set the
		root partition to ro for
		read-only.

	Reboot into single user mode.

	Run tunefs -l
		 enable on /.

	Reboot the system.

	Run mount -urw
		/ and change the
		ro back to rw in
		/etc/fstab and reboot the system
		again.

	Double-check the output from
		mount to ensure that
		multilabel has been properly set on
		the root file system.

	After establishing a secure environment with
	 MAC, Xorg no
	 longer starts:
	This could be caused by the MAC
	 partition policy or by a mislabeling
	 in one of the MAC labeling policies.
	 To debug, try the following:
	Check the error message. If the user is in the
		insecure class, the
		partition policy may be the
		culprit. Try setting the user's class back to the
		default class and rebuild the
		database with cap_mkdb. If this
		does not alleviate the problem, go to step two.

	Double-check that the label policies are set
		correctly for the user,
		Xorg, and the
		/dev entries.

	If neither of these resolve the problem, send the
		error message and a description of the environment to
		the FreeBSD general questions mailing list.

	The _secure_path: unable to stat
	 .login_conf error appears:
	This error can appear when a user attempts to switch
	 from the root
	 user to another user in the system. This message
	 usually occurs when the user has a higher label setting
	 than that of the user they are attempting to become.
	 For instance, if joe has a default label
	 of biba/low and root has a label of
	 biba/high, root cannot view
	 joe's home
	 directory. This will happen whether or not root has used
	 su to become joe as the Biba
	 integrity model will not permit root to view objects set
	 at a lower integrity level.

	The system no longer recognizes root:
	When this occurs, whoami returns
	 0 and su returns
	 who are you?.
This can happen if a labeling policy has been
	 disabled by sysctl(8) or the policy module was
	 unloaded. If the policy is disabled, the login
	 capabilities database needs to be reconfigured. Double
	 check /etc/login.conf to ensure
	 that all label options have been
	 removed and rebuild the database with
	 cap_mkdb.
This may also happen if a policy restricts access to
	 master.passwd. This is usually
	 caused by an administrator altering the file under a
	 label which conflicts with the general policy being used
	 by the system. In these cases, the user information
	 would be read by the system and access would be blocked
	 as the file has inherited the new label. Disable the
	 policy using sysctl(8) and everything should return
	 to normal.

11.12. Adding Swap Space
Sometimes a system requires more swap space. This section
 describes two methods to increase swap space: adding swap to an
 existing partition or new hard drive, and creating a swap file
 on an existing partition.
For information on how to encrypt swap space, which options
 exist, and why it should be done, refer to Section 17.13, “Encrypting Swap”.
11.12.1. Swap on a New Hard Drive or Existing Partition
Adding a new hard drive for swap gives better performance
	than using a partition on an existing drive. Setting up
	partitions and hard drives is explained in Section 17.2, “Adding Disks” while Section 2.6.1, “Designing the Partition Layout” discusses partition layouts
	and swap partition size considerations.
Use swapon to add a swap partition to
	the system. For example:
swapon /dev/ada1s1b
Warning:
It is possible to use any partition not currently
	 mounted, even if it already contains data. Using
	 swapon on a partition that contains data
	 will overwrite and destroy that data. Make sure that the
	 partition to be added as swap is really the intended
	 partition before running swapon.

To automatically add this swap partition on boot, add an
	entry to /etc/fstab:
/dev/ada1s1b	none	swap	sw	0	0
See fstab(5) for an explanation of the entries in
	/etc/fstab. More information about
	swapon can be found in
	swapon(8).
11.12.2. Creating a Swap File
These examples create a 512M swap file called
	/usr/swap0 instead of using a
	partition.
Using swap files requires that the module needed by
	md(4) has either been built into the kernel or has been
	loaded before swap is enabled. See
	Chapter 8, Configuring the FreeBSD Kernel for information about building
	a custom kernel.
Example 11.2. Creating a Swap File
	Create the swap file:
dd if=/dev/zero of=/usr/swap0 bs=1m count=512

	Set the proper permissions on the new file:
chmod 0600 /usr/swap0

	Inform the system about the swap file by adding a
	 line to /etc/fstab:
md99	none	swap	sw,file=/usr/swap0,late	0	0
The md(4) device md99 is
	 used, leaving lower device numbers available for
	 interactive use.

	Swap space will be added on system startup. To add
	 swap space immediately, use swapon(8):
swapon -aL

13.3. One-time Passwords
By default, FreeBSD includes support for One-time Passwords In
 Everything (OPIE). OPIE
 is designed to prevent replay attacks, in which an attacker
 discovers a user's password and uses it to access a system.
 Since a password is only used once in OPIE, a
 discovered password is of little use to an attacker.
 OPIE uses a secure hash and a
 challenge/response system to manage passwords. The FreeBSD
 implementation uses the MD5 hash by
 default.
OPIE uses three different types of
 passwords. The first is the usual UNIX® or Kerberos password.
 The second is the one-time password which is generated by
 opiekey. The third type of password is the
 “secret password” which is used to generate
 one-time passwords. The secret password has nothing to do with,
 and should be different from, the UNIX® password.
There are two other pieces of data that are important to
 OPIE. One is the “seed” or
 “key”, consisting of two letters and five digits.
 The other is the “iteration count”, a number
 between 1 and 100. OPIE creates the one-time
 password by concatenating the seed and the secret password,
 applying the MD5 hash as many times as
 specified by the iteration count, and turning the result into
 six short English words which represent the one-time password.
 The authentication system keeps track of the last one-time
 password used, and the user is authenticated if the hash of the
 user-provided password is equal to the previous password.
 Because a one-way hash is used, it is impossible to generate
 future one-time passwords if a successfully used password is
 captured. The iteration count is decremented after each
 successful login to keep the user and the login program in sync.
 When the iteration count gets down to 1,
 OPIE must be reinitialized.
There are a few programs involved in this process. A
 one-time password, or a consecutive list of one-time passwords,
 is generated by passing an iteration count, a seed, and a secret
 password to opiekey(1). In addition to initializing
 OPIE, opiepasswd(1) is used to change
 passwords, iteration counts, or seeds. The relevant credential
 files in /etc/opiekeys are examined by
 opieinfo(1) which prints out the invoking user's current
 iteration count and seed.
This section describes four different sorts of operations.
 The first is how to set up one-time-passwords for the first time
 over a secure connection. The second is how to use
 opiepasswd over an insecure connection. The
 third is how to log in over an insecure connection. The fourth
 is how to generate a number of keys which can be written down or
 printed out to use at insecure locations.
13.3.1. Initializing OPIE
To initialize OPIE for the first time,
	run this command from a secure location:
% opiepasswd -c
Adding unfurl:
Only use this method from the console; NEVER from remote. If you are using
telnet, xterm, or a dial-in, type ^C now or exit with no password.
Then run opiepasswd without the -c parameter.
Using MD5 to compute responses.
Enter new secret pass phrase:
Again new secret pass phrase:

ID unfurl OTP key is 499 to4268
MOS MALL GOAT ARM AVID COED
The -c sets console mode which assumes
	that the command is being run from a secure location, such as
	a computer under the user's control or a
	SSH session to a computer under the user's
	control.
When prompted, enter the secret password which will be
	used to generate the one-time login keys. This password
	should be difficult to guess and should be different than the
	password which is associated with the user's login account.
	It must be between 10 and 127 characters long. Remember this
	password.
The ID line lists the login name
	(unfurl), default iteration count
	(499), and default seed
	(to4268). When logging in, the system will
	remember these parameters and display them, meaning that they
	do not have to be memorized. The last line lists the
	generated one-time password which corresponds to those
	parameters and the secret password. At the next login, use
	this one-time password.
13.3.2. Insecure Connection Initialization
To initialize or change the secret password on an
	insecure system, a secure connection is needed to some place
	where opiekey can be run. This might be a
	shell prompt on a trusted machine. An iteration count is
	needed, where 100 is probably a good value, and the seed can
	either be specified or the randomly-generated one used. On
	the insecure connection, the machine being initialized, use
	opiepasswd(1):
% opiepasswd

Updating unfurl:
You need the response from an OTP generator.
Old secret pass phrase:
	otp-md5 498 to4268 ext
	Response: GAME GAG WELT OUT DOWN CHAT
New secret pass phrase:
	otp-md5 499 to4269
	Response: LINE PAP MILK NELL BUOY TROY

ID mark OTP key is 499 gr4269
LINE PAP MILK NELL BUOY TROY
To accept the default seed, press Return.
	Before entering an access password, move over to the secure
	connection and give it the same parameters:
% opiekey 498 to4268
Using the MD5 algorithm to compute response.
Reminder: Do not use opiekey from telnet or dial-in sessions.
Enter secret pass phrase:
GAME GAG WELT OUT DOWN CHAT
Switch back over to the insecure connection, and copy the
	generated one-time password over to the relevant
	program.
13.3.3. Generating a Single One-time Password
After initializing OPIE and logging in,
	a prompt like this will be displayed:
% telnet example.com
Trying 10.0.0.1...
Connected to example.com
Escape character is '^]'.

FreeBSD/i386 (example.com) (ttypa)

login: <username>
otp-md5 498 gr4269 ext
Password:
The OPIE prompts provides a useful
	feature. If Return is pressed at the
	password prompt, the prompt will turn echo on and display
	what is typed. This can be useful when attempting to type in
	a password by hand from a printout.
At this point, generate the one-time password to answer
	this login prompt. This must be done on a trusted system
	where it is safe to run opiekey(1). There are versions
	of this command for Windows®, Mac OS® and FreeBSD. This command
	needs the iteration count and the seed as command line
	options. Use cut-and-paste from the login prompt on the
	machine being logged in to.
On the trusted system:
% opiekey 498 to4268
Using the MD5 algorithm to compute response.
Reminder: Do not use opiekey from telnet or dial-in sessions.
Enter secret pass phrase:
GAME GAG WELT OUT DOWN CHAT
Once the one-time password is generated, continue to log
	in.
13.3.4. Generating Multiple One-time Passwords
Sometimes there is no access to a trusted machine or
	secure connection. In this case, it is possible to use
	opiekey(1) to generate a number of one-time passwords
	beforehand. For example:
% opiekey -n 5 30 zz99999
Using the MD5 algorithm to compute response.
Reminder: Do not use opiekey from telnet or dial-in sessions.
Enter secret pass phrase: <secret password>
26: JOAN BORE FOSS DES NAY QUIT
27: LATE BIAS SLAY FOLK MUCH TRIG
28: SALT TIN ANTI LOON NEAL USE
29: RIO ODIN GO BYE FURY TIC
30: GREW JIVE SAN GIRD BOIL PHI
The -n 5 requests five keys in sequence,
	and 30 specifies what the last iteration
	number should be. Note that these are printed out in
	reverse order of use. The really
	paranoid might want to write the results down by hand;
	otherwise, print the list. Each line shows both the iteration
	count and the one-time password. Scratch off the passwords as
	they are used.
13.3.5. Restricting Use of UNIX® Passwords
OPIE can restrict the use of UNIX®
	passwords based on the IP address of a login session. The
	relevant file is /etc/opieaccess, which
	is present by default. Refer to opieaccess(5) for more
	information on this file and which security considerations to
	be aware of when using it.
Here is a sample opieaccess:
permit 192.168.0.0 255.255.0.0
This line allows users whose IP source address (which is
	vulnerable to spoofing) matches the specified value and mask,
	to use UNIX® passwords at any time.
If no rules in opieaccess are
	matched, the default is to deny non-OPIE
	logins.
29.12. iSCSI Initiator and Target
 Configuration
iSCSI is a way to share storage over a
 network. Unlike NFS, which works at the file
 system level, iSCSI works at the block device
 level.
In iSCSI terminology, the system that
 shares the storage is known as the target.
 The storage can be a physical disk, or an area representing
 multiple disks or a portion of a physical disk. For example, if
 the disk(s) are formatted with ZFS, a zvol
 can be created to use as the iSCSI
 storage.
The clients which access the iSCSI
 storage are called initiators. To
 initiators, the storage available through
 iSCSI appears as a raw, unformatted disk
 known as a LUN. Device nodes for the disk
 appear in /dev/ and the device must be
 separately formatted and mounted.
FreeBSD provides a native,
 kernel-based iSCSI target and initiator.
 This section describes how to configure a FreeBSD system as a
 target or an initiator.
29.12.1. Configuring an iSCSI Target
To configure an iSCSI target, create
	the /etc/ctl.conf configuration file, add
	a line to /etc/rc.conf to make sure the
	ctld(8) daemon is automatically started at boot, and then
	start the daemon.
The following is an example of a simple
	/etc/ctl.conf configuration file. Refer
	to ctl.conf(5) for a more complete description of this
	file's available options.
portal-group pg0 {
	discovery-auth-group no-authentication
	listen 0.0.0.0
	listen [::]
}

target iqn.2012-06.com.example:target0 {
	auth-group no-authentication
	portal-group pg0

	lun 0 {
		path /data/target0-0
		size 4G
	}
}
The first entry defines the pg0 portal
	group. Portal groups define which network addresses the
	ctld(8) daemon will listen on. The
	discovery-auth-group no-authentication
	entry indicates that any initiator is allowed to perform
	iSCSI target discovery without
	authentication. Lines three and four configure ctld(8)
	to listen on all IPv4
	(listen 0.0.0.0) and
	IPv6 (listen [::])
	addresses on the default port of 3260.
It is not necessary to define a portal group as there is a
	built-in portal group called default. In
	this case, the difference between default
	and pg0 is that with
	default, target discovery is always denied,
	while with pg0, it is always
	allowed.
The second entry defines a single target. Target has two
	possible meanings: a machine serving iSCSI
	or a named group of LUNs. This example
	uses the latter meaning, where
	iqn.2012-06.com.example:target0 is the
	target name. This target name is suitable for testing
	purposes. For actual use, change
	com.example to the real domain name,
	reversed. The 2012-06 represents the year
	and month of acquiring control of that domain name, and
	target0 can be any value. Any number of
	targets can be defined in this configuration file.
The auth-group no-authentication line
	allows all initiators to connect to the specified target and
	portal-group pg0 makes the target reachable
	through the pg0 portal group.
The next section defines the LUN. To
	the initiator, each LUN will be visible as
	a separate disk device. Multiple LUNs can
	be defined for each target. Each LUN is
	identified by a number, where LUN 0 is
	mandatory. The path /data/target0-0 line
	defines the full path to a file or zvol backing the
	LUN. That path must exist before starting
	ctld(8). The second line is optional and specifies the
	size of the LUN.
Next, to make sure the ctld(8) daemon is started at
	boot, add this line to
	/etc/rc.conf:
ctld_enable="YES"
To start ctld(8) now, run this command:
service ctld start
As the ctld(8) daemon is started, it reads
	/etc/ctl.conf. If this file is edited
	after the daemon starts, use this command so that the changes
	take effect immediately:
service ctld reload
29.12.1.1. Authentication
The previous example is inherently insecure as it uses
	 no authentication, granting anyone full access to all
	 targets. To require a username and password to access
	 targets, modify the configuration as follows:
auth-group ag0 {
	chap username1 secretsecret
	chap username2 anothersecret
}

portal-group pg0 {
	discovery-auth-group no-authentication
	listen 0.0.0.0
	listen [::]
}

target iqn.2012-06.com.example:target0 {
	auth-group ag0
	portal-group pg0
	lun 0 {
		path /data/target0-0
		size 4G
	}
}
The auth-group section defines
	 username and password pairs. An initiator trying to connect
	 to iqn.2012-06.com.example:target0 must
	 first specify a defined username and secret. However,
	 target discovery is still permitted without authentication.
	 To require target discovery authentication, set
	 discovery-auth-group to a defined
	 auth-group name instead of
	 no-authentication.
It is common to define a single exported target for
	 every initiator. As a shorthand for the syntax above, the
	 username and password can be specified directly in the
	 target entry:
target iqn.2012-06.com.example:target0 {
	portal-group pg0
	chap username1 secretsecret

	lun 0 {
		path /data/target0-0
		size 4G
	}
}
29.12.2. Configuring an iSCSI Initiator
Note:
The iSCSI initiator described in this
	 section is supported starting with FreeBSD 10.0-RELEASE. To
	 use the iSCSI initiator available in
	 older versions, refer to iscontrol(8).

The iSCSI initiator requires that the
	iscsid(8) daemon is running. This daemon does not use a
	configuration file. To start it automatically at boot, add
	this line to /etc/rc.conf:
iscsid_enable="YES"
To start iscsid(8) now, run this command:
service iscsid start
Connecting to a target can be done with or without an
	/etc/iscsi.conf configuration file. This
	section demonstrates both types of connections.
29.12.2.1. Connecting to a Target Without a Configuration
	 File
To connect an initiator to a single target, specify the
	 IP address of the portal and the name of
	 the target:
iscsictl -A -p 10.10.10.10 -t iqn.2012-06.com.example:target0
To verify if the connection succeeded, run
	 iscsictl without any arguments. The
	 output should look similar to this:
Target name Target portal State
iqn.2012-06.com.example:target0 10.10.10.10 Connected: da0
In this example, the iSCSI session
	 was successfully established, with
	 /dev/da0 representing the attached
	 LUN. If the
	 iqn.2012-06.com.example:target0 target
	 exports more than one LUN, multiple
	 device nodes will be shown in that section of the
	 output:
Connected: da0 da1 da2.
Any errors will be reported in the output, as well as
	 the system logs. For example, this message usually means
	 that the iscsid(8) daemon is not running:
Target name Target portal State
iqn.2012-06.com.example:target0 10.10.10.10 Waiting for iscsid(8)
The following message suggests a networking problem,
	 such as a wrong IP address or
	 port:
Target name Target portal State
iqn.2012-06.com.example:target0 10.10.10.11 Connection refused
This message means that the specified target name is
	 wrong:
Target name Target portal State
iqn.2012-06.com.example:target0 10.10.10.10 Not found
This message means that the target requires
	 authentication:
Target name Target portal State
iqn.2012-06.com.example:target0 10.10.10.10 Authentication failed
To specify a CHAP username and
	 secret, use this syntax:
iscsictl -A -p 10.10.10.10 -t iqn.2012-06.com.example:target0 -u user -s secretsecret
29.12.2.2. Connecting to a Target with a Configuration
	 File
To connect using a configuration file, create
	 /etc/iscsi.conf with contents like
	 this:
t0 {
	TargetAddress = 10.10.10.10
	TargetName = iqn.2012-06.com.example:target0
	AuthMethod = CHAP
	chapIName = user
	chapSecret = secretsecret
}
The t0 specifies a nickname for the
	 configuration file section. It will be used by the
	 initiator to specify which configuration to use. The other
	 lines specify the parameters to use during connection. The
	 TargetAddress and
	 TargetName are mandatory, whereas the
	 other options are optional. In this example, the
	 CHAP username and secret are
	 shown.
To connect to the defined target, specify the
	 nickname:
iscsictl -An t0
Alternately, to connect to all targets defined in the
	 configuration file, use:
iscsictl -Aa
To make the initiator automatically connect to all
	 targets in /etc/iscsi.conf, add the
	 following to /etc/rc.conf:
iscsictl_enable="YES"
iscsictl_flags="-Aa"
26.6. Setting Up the Serial Console
Contributed by Kazutaka YOKOTA. Based on a document by Bill Paul. FreeBSD has the ability to boot a system with a dumb
 terminal on a serial port as a console. This configuration is
 useful for system administrators who wish to install FreeBSD on
 machines that have no keyboard or monitor attached, and
 developers who want to debug the kernel or device
 drivers.
As described in Chapter 12, The FreeBSD Booting Process, FreeBSD employs a three
 stage bootstrap. The first two stages are in the boot block
 code which is stored at the beginning of the FreeBSD slice on the
 boot disk. The boot block then loads and runs the boot loader
 as the third stage code.
In order to set up booting from a serial console, the boot
 block code, the boot loader code, and the kernel need to be
 configured.
26.6.1. Quick Serial Console Configuration
This section provides a fast overview of setting up the
	serial console. This procedure can be used when the dumb
	terminal is connected to COM1.
Procedure 26.1. Configuring a Serial Console on
	 COM1
	Connect the serial cable to
	 COM1 and the controlling
	 terminal.

	To configure boot messages to display on the serial
	 console, issue the following command as the
	 superuser:
echo 'console="comconsole"' >> /boot/loader.conf

	Edit /etc/ttys and change
	 off to on and
	 dialup to vt100 for
	 the ttyu0 entry. Otherwise, a
	 password will not be required to connect via the serial
	 console, resulting in a potential security hole.

	Reboot the system to see if the changes took
	 effect.

If a different configuration is required, see the next
	section for a more in-depth configuration explanation.
26.6.2. In-Depth Serial Console Configuration
This section provides a more detailed explanation of the
	steps needed to setup a serial console in FreeBSD.
Procedure 26.2. Configuring a Serial Console
	Prepare a serial cable.
Use either a null-modem cable or a standard serial
	 cable and a null-modem adapter. See Section 26.2.1, “Serial Cables and Ports” for a discussion on serial
	 cables.

	Unplug the keyboard.
Many systems probe for the keyboard during the
	 Power-On Self-Test (POST) and will
	 generate an error if the keyboard is not detected. Some
	 machines will refuse to boot until the keyboard is plugged
	 in.
If the computer complains about the error, but boots
	 anyway, no further configuration is needed.
If the computer refuses to boot without a keyboard
	 attached, configure the BIOS so that it
	 ignores this error. Consult the motherboard's manual for
	 details on how to do this.
Tip:
Try setting the keyboard to “Not
		installed” in the BIOS.
	 This setting tells the BIOS not to
	 probe for a keyboard at power-on so it should not
	 complain if the keyboard is absent. If that option is
	 not present in the BIOS, look for an
	 “Halt on Error” option instead. Setting
	 this to “All but Keyboard” or to “No
		Errors” will have the same effect.

If the system has a PS/2® mouse, unplug it as well.
	 PS/2® mice share some hardware with the keyboard and
	 leaving the mouse plugged in can fool the keyboard probe
	 into thinking the keyboard is still there.
Note:
While most systems will boot without a keyboard,
	 quite a few will not boot without a graphics adapter.
	 Some systems can be configured to boot with no graphics
	 adapter by changing the “graphics adapter”
	 setting in the BIOS configuration to
	 “Not installed”. Other systems do not
	 support this option and will refuse to boot if there is
	 no display hardware in the system. With these machines,
	 leave some kind of graphics card plugged in, even if it
	 is just a junky mono board. A monitor does not need to
	 be attached.

	Plug a dumb terminal, an old computer with a modem
	 program, or the serial port on another UNIX® box into the
	 serial port.

	Add the appropriate hint.sio.*
	 entries to /boot/device.hints for the
	 serial port. Some multi-port cards also require kernel
	 configuration options. Refer to sio(4) for the
	 required options and device hints for each supported
	 serial port.

	Create boot.config in the root
	 directory of the a partition on the
	 boot drive.
This file instructs the boot block code how to boot
	 the system. In order to activate the serial console, one
	 or more of the following options are needed. When using
	 multiple options, include them all on the same
	 line:
	-h
	Toggles between the internal and serial
		 consoles. Use this to switch console devices. For
		 instance, to boot from the internal (video) console,
		 use -h to direct the boot loader
		 and the kernel to use the serial port as its console
		 device. Alternatively, to boot from the serial
		 port, use -h to tell the boot
		 loader and the kernel to use the video display as
		 the console instead.

	-D
	Toggles between the single and dual console
		 configurations. In the single configuration, the
		 console will be either the internal console (video
		 display) or the serial port, depending on the state
		 of -h. In the dual console
		 configuration, both the video display and the
		 serial port will become the console at the same
		 time, regardless of the state of
		 -h. However, the dual console
		 configuration takes effect only while the boot
		 block is running. Once the boot loader gets
		 control, the console specified by
		 -h becomes the only
		 console.

	-P
	Makes the boot block probe the keyboard. If no
		 keyboard is found, the -D and
		 -h options are automatically
		 set.
Note:
Due to space constraints in the current
		 version of the boot blocks, -P is
		 capable of detecting extended keyboards only.
		 Keyboards with less than 101 keys and without F11
		 and F12 keys may not be detected. Keyboards on
		 some laptops may not be properly found because of
		 this limitation. If this is the case, do not use
		 -P.

Use either -P to select the console
	 automatically or -h to activate the
	 serial console. Refer to boot(8) and
	 boot.config(5) for more details.
The options, except for -P, are
	 passed to the boot loader. The boot loader will
	 determine whether the internal video or the serial port
	 should become the console by examining the state of
	 -h. This means that if
	 -D is specified but -h
	 is not specified in /boot.config, the
	 serial port can be used as the console only during the
	 boot block as the boot loader will use the internal video
	 display as the console.

	Boot the machine.
When FreeBSD starts, the boot blocks echo the contents of
	 /boot.config to the console. For
	 example:
/boot.config: -P
Keyboard: no
The second line appears only if -P is
	 in /boot.config and indicates the
	 presence or absence of the keyboard. These messages go
	 to either the serial or internal console, or both,
	 depending on the option in
	 /boot.config:
	Options	Message goes to
	none	internal console
	-h	serial console
	-D	serial and internal consoles
	-Dh	serial and internal consoles
	-P, keyboard present	internal console
	-P, keyboard absent	serial console

After the message, there will be a small pause before
	 the boot blocks continue loading the boot loader and
	 before any further messages are printed to the console.
	 Under normal circumstances, there is no need to interrupt
	 the boot blocks, but one can do so in order to make sure
	 things are set up correctly.
Press any key, other than Enter, at
	 the console to interrupt the boot process. The boot
	 blocks will then prompt for further action:
>> FreeBSD/i386 BOOT
Default: 0:ad(0,a)/boot/loader
boot:
Verify that the above message appears on either the
	 serial or internal console, or both, according to the
	 options in /boot.config. If the
	 message appears in the correct console, press
	 Enter to continue the boot
	 process.
If there is no prompt on the serial terminal,
	 something is wrong with the settings. Enter
	 -h then Enter or
	 Return to tell the boot block (and then
	 the boot loader and the kernel) to choose the serial port
	 for the console. Once the system is up, go back and check
	 what went wrong.

During the third stage of the boot process, one can still
	switch between the internal console and the serial console by
	setting appropriate environment variables in the boot loader.
	See loader(8) for more
	information.
Note:
This line in /boot/loader.conf or
	 /boot/loader.conf.local configures the
	 boot loader and the kernel to send their boot messages to
	 the serial console, regardless of the options in
	 /boot.config:
console="comconsole"
That line should be the first line of
	 /boot/loader.conf so that boot messages
	 are displayed on the serial console as early as
	 possible.
If that line does not exist, or if it is set to
	 console="vidconsole", the boot loader and
	 the kernel will use whichever console is indicated by
	 -h in the boot block. See
	 loader.conf(5) for more information.
At the moment, the boot loader has no option
	 equivalent to -P in the boot block, and
	 there is no provision to automatically select the internal
	 console and the serial console based on the presence of the
	 keyboard.

Tip:
While it is not required, it is possible to provide a
	 login prompt over the serial line. To
	 configure this, edit the entry for the serial port in
	 /etc/ttys using the instructions in
	 Section 26.3.1, “Terminal Configuration”. If the speed of the serial
	 port has been changed, change std.9600 to
	 match the new setting.

26.6.3. Setting a Faster Serial Port Speed
By default, the serial port settings are 9600 baud, 8
	bits, no parity, and 1 stop bit. To change the default
	console speed, use one of the following options:
	Edit /etc/make.conf and set
	 BOOT_COMCONSOLE_SPEED to the new
	 console speed. Then, recompile and install the boot
	 blocks and the boot loader:
cd /sys/boot
make clean
make
make install
If the serial console is configured in some other way
	 than by booting with -h, or if the serial
	 console used by the kernel is different from the one used
	 by the boot blocks, add the following option, with the
	 desired speed, to a custom kernel configuration file and
	 compile a new kernel:
options CONSPEED=19200

	Add the
	 -S19200 boot
	 option to /boot.config, replacing
	 19200 with the speed to
	 use.

	Add the following options to
	 /boot/loader.conf. Replace
	 115200 with the speed to
	 use.
boot_multicons="YES"
boot_serial="YES"
comconsole_speed="115200"
console="comconsole,vidconsole"

26.6.4. Entering the DDB Debugger from the Serial Line
To configure the ability to drop into the kernel debugger
	from the serial console, add the following options to a custom
	kernel configuration file and compile the kernel using the
	instructions in Chapter 8, Configuring the FreeBSD Kernel. Note that
	while this is useful for remote diagnostics, it is also
	dangerous if a spurious BREAK is generated on the serial port.
	Refer to ddb(4) and ddb(8) for more information
	about the kernel debugger.
options BREAK_TO_DEBUGGER
options DDB
19.6. Advanced Topics
19.6.1. Tuning
There are a number of tunables that can be adjusted to
	make ZFS perform best for different
	workloads.
	vfs.zfs.arc_max
	 - Maximum size of the ARC.
	 The default is all RAM but 1 GB,
	 or 5/8 of all RAM, whichever is more.
	 However, a lower value should be used if the system will
	 be running any other daemons or processes that may require
	 memory. This value can be adjusted at runtime with
	 sysctl(8) and can be set in
	 /boot/loader.conf or
	 /etc/sysctl.conf.

	vfs.zfs.arc_meta_limit
	 - Limit the portion of the
	 ARC
	 that can be used to store metadata. The default is one
	 fourth of vfs.zfs.arc_max. Increasing
	 this value will improve performance if the workload
	 involves operations on a large number of files and
	 directories, or frequent metadata operations, at the cost
	 of less file data fitting in the ARC.
	 This value can be adjusted at runtime with sysctl(8)
	 and can be set in
	 /boot/loader.conf or
	 /etc/sysctl.conf.

	vfs.zfs.arc_min
	 - Minimum size of the ARC.
	 The default is one half of
	 vfs.zfs.arc_meta_limit. Adjust this
	 value to prevent other applications from pressuring out
	 the entire ARC.
	 This value can be adjusted at runtime with sysctl(8)
	 and can be set in
	 /boot/loader.conf or
	 /etc/sysctl.conf.

	vfs.zfs.vdev.cache.size
	 - A preallocated amount of memory reserved as a cache for
	 each device in the pool. The total amount of memory used
	 will be this value multiplied by the number of devices.
	 This value can only be adjusted at boot time, and is set
	 in /boot/loader.conf.

	vfs.zfs.min_auto_ashift
	 - Minimum ashift (sector size) that
	 will be used automatically at pool creation time. The
	 value is a power of two. The default value of
	 9 represents
	 2^9 = 512, a sector size of 512 bytes.
	 To avoid write amplification and get
	 the best performance, set this value to the largest sector
	 size used by a device in the pool.
Many drives have 4 KB sectors. Using the default
	 ashift of 9 with
	 these drives results in write amplification on these
	 devices. Data that could be contained in a single
	 4 KB write must instead be written in eight 512-byte
	 writes. ZFS tries to read the native
	 sector size from all devices when creating a pool, but
	 many drives with 4 KB sectors report that their
	 sectors are 512 bytes for compatibility. Setting
	 vfs.zfs.min_auto_ashift to
	 12 (2^12 = 4096)
	 before creating a pool forces ZFS to
	 use 4 KB blocks for best performance on these
	 drives.
Forcing 4 KB blocks is also useful on pools where
	 disk upgrades are planned. Future disks are likely to use
	 4 KB sectors, and ashift values
	 cannot be changed after a pool is created.
In some specific cases, the smaller 512-byte block
	 size might be preferable. When used with 512-byte disks
	 for databases, or as storage for virtual machines, less
	 data is transferred during small random reads. This can
	 provide better performance, especially when using a
	 smaller ZFS record size.

	vfs.zfs.prefetch_disable
	 - Disable prefetch. A value of 0 is
	 enabled and 1 is disabled. The default
	 is 0, unless the system has less than
	 4 GB of RAM. Prefetch works by
	 reading larger blocks than were requested into the
	 ARC
	 in hopes that the data will be needed soon. If the
	 workload has a large number of random reads, disabling
	 prefetch may actually improve performance by reducing
	 unnecessary reads. This value can be adjusted at any time
	 with sysctl(8).

	vfs.zfs.vdev.trim_on_init
	 - Control whether new devices added to the pool have the
	 TRIM command run on them. This ensures
	 the best performance and longevity for
	 SSDs, but takes extra time. If the
	 device has already been secure erased, disabling this
	 setting will make the addition of the new device faster.
	 This value can be adjusted at any time with
	 sysctl(8).

	vfs.zfs.vdev.max_pending
	 - Limit the number of pending I/O requests per device.
	 A higher value will keep the device command queue full
	 and may give higher throughput. A lower value will reduce
	 latency. This value can be adjusted at any time with
	 sysctl(8).

	vfs.zfs.top_maxinflight
	 - Maxmimum number of outstanding I/Os per top-level
	 vdev. Limits the
	 depth of the command queue to prevent high latency. The
	 limit is per top-level vdev, meaning the limit applies to
	 each mirror,
	 RAID-Z, or
	 other vdev independently. This value can be adjusted at
	 any time with sysctl(8).

	vfs.zfs.l2arc_write_max
	 - Limit the amount of data written to the L2ARC
	 per second. This tunable is designed to extend the
	 longevity of SSDs by limiting the
	 amount of data written to the device. This value can be
	 adjusted at any time with sysctl(8).

	vfs.zfs.l2arc_write_boost
	 - The value of this tunable is added to vfs.zfs.l2arc_write_max
	 and increases the write speed to the
	 SSD until the first block is evicted
	 from the L2ARC.
	 This “Turbo Warmup Phase” is designed to
	 reduce the performance loss from an empty L2ARC
	 after a reboot. This value can be adjusted at any time
	 with sysctl(8).

	vfs.zfs.scrub_delay
	 - Number of ticks to delay between each I/O during a
	 scrub.
	 To ensure that a scrub does not
	 interfere with the normal operation of the pool, if any
	 other I/O is happening the
	 scrub will delay between each command.
	 This value controls the limit on the total
	 IOPS (I/Os Per Second) generated by the
	 scrub. The granularity of the setting
	 is determined by the value of kern.hz
	 which defaults to 1000 ticks per second. This setting may
	 be changed, resulting in a different effective
	 IOPS limit. The default value is
	 4, resulting in a limit of:
	 1000 ticks/sec / 4 =
	 250 IOPS. Using a value of
	 20 would give a limit of:
	 1000 ticks/sec / 20 =
	 50 IOPS. The speed of
	 scrub is only limited when there has
	 been recent activity on the pool, as determined by vfs.zfs.scan_idle.
	 This value can be adjusted at any time with
	 sysctl(8).

	vfs.zfs.resilver_delay
	 - Number of milliseconds of delay inserted between
	 each I/O during a
	 resilver. To
	 ensure that a resilver does not interfere with the normal
	 operation of the pool, if any other I/O is happening the
	 resilver will delay between each command. This value
	 controls the limit of total IOPS (I/Os
	 Per Second) generated by the resilver. The granularity of
	 the setting is determined by the value of
	 kern.hz which defaults to 1000 ticks
	 per second. This setting may be changed, resulting in a
	 different effective IOPS limit. The
	 default value is 2, resulting in a limit of:
	 1000 ticks/sec / 2 =
	 500 IOPS. Returning the pool to
	 an Online state may
	 be more important if another device failing could
	 Fault the pool,
	 causing data loss. A value of 0 will give the resilver
	 operation the same priority as other operations, speeding
	 the healing process. The speed of resilver is only
	 limited when there has been other recent activity on the
	 pool, as determined by vfs.zfs.scan_idle.
	 This value can be adjusted at any time with
	 sysctl(8).

	vfs.zfs.scan_idle
	 - Number of milliseconds since the last operation before
	 the pool is considered idle. When the pool is idle the
	 rate limiting for scrub
	 and
	 resilver are
	 disabled. This value can be adjusted at any time with
	 sysctl(8).

	vfs.zfs.txg.timeout
	 - Maximum number of seconds between
	 transaction groups.
	 The current transaction group will be written to the pool
	 and a fresh transaction group started if this amount of
	 time has elapsed since the previous transaction group. A
	 transaction group my be triggered earlier if enough data
	 is written. The default value is 5 seconds. A larger
	 value may improve read performance by delaying
	 asynchronous writes, but this may cause uneven performance
	 when the transaction group is written. This value can be
	 adjusted at any time with sysctl(8).

19.6.2. ZFS on i386
Some of the features provided by ZFS
	are memory intensive, and may require tuning for maximum
	efficiency on systems with limited
	RAM.
19.6.2.1. Memory
As a bare minimum, the total system memory should be at
	 least one gigabyte. The amount of recommended
	 RAM depends upon the size of the pool and
	 which ZFS features are used. A general
	 rule of thumb is 1 GB of RAM for every 1 TB of
	 storage. If the deduplication feature is used, a general
	 rule of thumb is 5 GB of RAM per TB of storage to be
	 deduplicated. While some users successfully use
	 ZFS with less RAM,
	 systems under heavy load may panic due to memory exhaustion.
	 Further tuning may be required for systems with less than
	 the recommended RAM requirements.
19.6.2.2. Kernel Configuration
Due to the address space limitations of the
	 i386™ platform, ZFS users on the
	 i386™ architecture must add this option to a
	 custom kernel configuration file, rebuild the kernel, and
	 reboot:
options KVA_PAGES=512
This expands the kernel address space, allowing
	 the vm.kvm_size tunable to be pushed
	 beyond the currently imposed limit of 1 GB, or the
	 limit of 2 GB for PAE. To find the
	 most suitable value for this option, divide the desired
	 address space in megabytes by four. In this example, it
	 is 512 for 2 GB.
19.6.2.3. Loader Tunables
The kmem address space can be
	 increased on all FreeBSD architectures. On a test system with
	 1 GB of physical memory, success was achieved with
	 these options added to
	 /boot/loader.conf, and the system
	 restarted:
vm.kmem_size="330M"
vm.kmem_size_max="330M"
vfs.zfs.arc_max="40M"
vfs.zfs.vdev.cache.size="5M"
For a more detailed list of recommendations for
	 ZFS-related tuning, see https://wiki.freebsd.org/ZFSTuningGuide.
17.13. Encrypting Swap
Written by Christian Brueffer. Like the encryption of disk partitions, encryption of swap
 space is used to protect sensitive information. Consider an
 application that deals with passwords. As long as these
 passwords stay in physical memory, they are not written to disk
 and will be cleared after a reboot. However, if FreeBSD starts
 swapping out memory pages to free space, the passwords may be
 written to the disk unencrypted. Encrypting swap space can be a
 solution for this scenario.
This section demonstrates how to configure an encrypted
 swap partition using gbde(8) or geli(8) encryption.
 It assumes that
 /dev/ada0s1b is the swap partition.
17.13.1. Configuring Encrypted Swap
Swap partitions are not encrypted by default and should be
	cleared of any sensitive data before continuing. To overwrite
	the current swap partition with random garbage, execute the
	following command:
dd if=/dev/random of=/dev/ada0s1b bs=1m
To encrypt the swap partition using gbde(8), add the
	.bde suffix to the swap line in
	/etc/fstab:
# Device		Mountpoint	FStype	Options		Dump	Pass#
/dev/ada0s1b.bde	none		swap	sw		0	0
To instead encrypt the swap partition using geli(8),
	use the
	.eli suffix:
# Device		Mountpoint	FStype	Options		Dump	Pass#
/dev/ada0s1b.eli	none		swap	sw		0	0
By default, geli(8) uses the AES
	algorithm with a key length of 128 bits. Normally the default
	settings will suffice. If desired, these defaults can be
	altered in the options field in
	/etc/fstab. The possible flags
	are:
	aalgo
	Data integrity verification algorithm used to ensure
	 that the encrypted data has not been tampered with. See
	 geli(8) for a list of supported algorithms.

	ealgo
	Encryption algorithm used to protect the data. See
	 geli(8) for a list of supported algorithms.

	keylen
	The length of the key used for the encryption
	 algorithm. See geli(8) for the key lengths that
	 are supported by each encryption algorithm.

	sectorsize
	The size of the blocks data is broken into before
	 it is encrypted. Larger sector sizes increase
	 performance at the cost of higher storage
	 overhead. The recommended size is 4096 bytes.

This example configures an encrypted swap partition using
	the Blowfish algorithm with a key length of 128 bits and a
	sectorsize of 4 kilobytes:
# Device		Mountpoint	FStype	Options				Dump	Pass#
/dev/ada0s1b.eli	none		swap	sw,ealgo=blowfish,keylen=128,sectorsize=4096	0	0
17.13.2. Encrypted Swap Verification
Once the system has rebooted, proper operation of the
	encrypted swap can be verified using
	swapinfo.
If gbde(8) is being used:
% swapinfo
Device 1K-blocks Used Avail Capacity
/dev/ada0s1b.bde 542720 0 542720 0%
If geli(8) is being used:
% swapinfo
Device 1K-blocks Used Avail Capacity
/dev/ada0s1b.eli 542720 0 542720 0%
Part III. System Administration
The remaining chapters cover all aspects of FreeBSD system
	administration. Each chapter starts by describing what will
	be learned as a result of reading the chapter, and also
	details what the reader is expected to know before tackling
	the material.
These chapters are designed to be read as the information
	is needed. They do not need to be read in any particular
	order, nor must all of them be read before beginning to use
	FreeBSD.

8.4. The Configuration File
In order to create a custom kernel configuration file and
 build a custom kernel, the full FreeBSD source tree must first be
 installed.
If /usr/src/ does not exist or it is
 empty, source has not been installed. Source can be installed
 using Subversion and the instructions
 in Section A.3, “Using Subversion”.
Once source is installed, review the contents of
 /usr/src/sys. This directory contains a
 number of subdirectories, including those which represent the
 following supported architectures: amd64,
 i386,
 powerpc, and
 sparc64. Everything inside a particular
 architecture's directory deals with that architecture only and
 the rest of the code is machine independent code common to all
 platforms. Each supported architecture has a
 conf subdirectory which contains the
 GENERIC kernel configuration file for that
 architecture.
Do not make edits to GENERIC. Instead,
 copy the file to a different name and make edits to the copy.
 The convention is to use a name with all capital letters. When
 maintaining multiple FreeBSD machines with different hardware, it
 is a good idea to name it after the machine's hostname. This
 example creates a copy, named MYKERNEL, of
 the GENERIC configuration file for the
 amd64 architecture:
cd /usr/src/sys/amd64/conf
cp GENERIC MYKERNEL
MYKERNEL can
 now be customized with any ASCII text editor.
 The default editor is vi, though an
 easier editor for beginners, called
 ee, is also installed with
 FreeBSD.
The format of the kernel configuration file is simple.
 Each line contains a keyword that represents a device or
 subsystem, an argument, and a brief description. Any text
 after a # is considered a comment and
 ignored. To remove kernel support for a device or subsystem,
 put a # at the beginning of the line
 representing that device or subsystem. Do not add or remove a
 # for any line that you do not
 understand.
Warning:
It is easy to remove support for a device or option and
	end up with a broken kernel. For example, if the ata(4)
	driver is removed from the kernel configuration file, a system
	using ATA disk drivers may not boot. When
	in doubt, just leave support in the kernel.

In addition to the brief descriptions provided in this file,
 additional descriptions are contained in
 NOTES, which can be found in the same
 directory as GENERIC for that architecture.
 For architecture independent options, refer to
 /usr/src/sys/conf/NOTES.
Tip:
When finished customizing the kernel configuration file,
	save a backup copy to a location outside of
	/usr/src.
Alternately, keep the kernel configuration file elsewhere
	and create a symbolic link to the file:
cd /usr/src/sys/amd64/conf
mkdir /root/kernels
cp GENERIC /root/kernels/MYKERNEL
ln -s /root/kernels/MYKERNEL

An include directive is available for use
 in configuration files. This allows another configuration file
 to be included in the current one, making it easy to maintain
 small changes relative to an existing file. If only a small
 number of additional options or drivers are required, this
 allows a delta to be maintained with respect to
 GENERIC, as seen in this example:
include GENERIC
ident MYKERNEL

options IPFIREWALL
options DUMMYNET
options IPFIREWALL_DEFAULT_TO_ACCEPT
options IPDIVERT
Using this method, the local configuration file expresses
 local differences from a GENERIC kernel.
 As upgrades are performed, new features added to
 GENERIC will also be added to the local
 kernel unless they are specifically prevented using
 nooptions or nodevice. A
 comprehensive list of configuration directives and their
 descriptions may be found in config(5).
Note:
To build a file which contains all available options,
	run the following command as root:
cd /usr/src/sys/arch/conf && make LINT

3.2. Virtual Consoles and Terminals
Unless FreeBSD has been configured to automatically start a
 graphical environment during startup, the system will boot
 into a command line login prompt, as seen in this
 example:
FreeBSD/amd64 (pc3.example.org) (ttyv0)

login:
The first line contains some information about the system.
 The amd64 indicates that the system in this
 example is running a 64-bit version of FreeBSD. The hostname is
 pc3.example.org, and
 ttyv0 indicates that this is the
 “system console”. The second line is the login
 prompt.
Since FreeBSD is a multiuser system, it needs some way to
 distinguish between different users. This is accomplished by
 requiring every user to log into the system before gaining
 access to the programs on the system. Every user has a
 unique name “username” and a personal
 “password”.
To log into the system console, type the username that
 was configured during system installation, as described in
 Section 2.8.5, “Add Users”, and press
 Enter. Then enter the password associated
 with the username and press Enter. The
 password is not echoed for security
 reasons.
Once the correct password is input, the message of the
 day (MOTD) will be displayed followed
 by a command prompt. Depending upon the shell that was
 selected when the user was created, this prompt will be a
 #, $, or
 % character. The prompt indicates that
 the user is now logged into the FreeBSD system console and ready
 to try the available commands.
3.2.1. Virtual Consoles
While the system console can be used to interact with
	the system, a user working from the command line at the
	keyboard of a FreeBSD system will typically instead log into a
	virtual console. This is because system messages are
	configured by default to display on the system console.
	These messages will appear over the command or file that the
	user is working on, making it difficult to concentrate on
	the work at hand.
By default, FreeBSD is configured to provide several virtual
	consoles for inputting commands. Each virtual console has
	its own login prompt and shell and it is easy to switch
	between virtual consoles. This essentially provides the
	command line equivalent of having several windows open at the
	same time in a graphical environment.
The key combinations
	Alt+F1
	through
	Alt+F8
	have been reserved by FreeBSD for switching between virtual
	consoles. Use
	Alt+F1
	to switch to the system console
	(ttyv0),
	Alt+F2
	to access the first virtual console
	(ttyv1),
	Alt+F3
	to access the second virtual console
	(ttyv2), and so on.
	When using Xorg as a graphical
	console, the combination becomes Ctrl+Alt+F1 to return to a text-based virtual console.
When switching from one console to the next, FreeBSD
	manages the screen output. The result is an illusion of
	having multiple virtual screens and keyboards that can be used
	to type commands for FreeBSD to run. The programs that are
	launched in one virtual console do not stop running when
	the user switches to a different virtual console.
Refer to kbdcontrol(1), vidcontrol(1),
	atkbd(4), syscons(4), and vt(4) for a more
	technical description of the FreeBSD console and its keyboard
	drivers.
In FreeBSD, the number of available virtual consoles is
	configured in this section of
	/etc/ttys:
name getty type status comments
#
ttyv0 "/usr/libexec/getty Pc" xterm on secure
Virtual terminals
ttyv1 "/usr/libexec/getty Pc" xterm on secure
ttyv2 "/usr/libexec/getty Pc" xterm on secure
ttyv3 "/usr/libexec/getty Pc" xterm on secure
ttyv4 "/usr/libexec/getty Pc" xterm on secure
ttyv5 "/usr/libexec/getty Pc" xterm on secure
ttyv6 "/usr/libexec/getty Pc" xterm on secure
ttyv7 "/usr/libexec/getty Pc" xterm on secure
ttyv8 "/usr/X11R6/bin/xdm -nodaemon" xterm off secure
To disable a virtual console, put a comment symbol
	(#) at the beginning of the line
	representing that virtual console. For example, to reduce the
	number of available virtual consoles from eight to four, put a
	# in front of the last four lines
	representing virtual consoles ttyv5
	through ttyv8.
	Do not comment out the line for the
	system console ttyv0. Note that the last
	virtual console (ttyv8) is used to access
	the graphical environment if Xorg
	has been installed and configured as described in
	Chapter 5, The X Window System.
For a detailed description of every column in this file
	and the available options for the virtual consoles, refer to
	ttys(5).
3.2.2. Single User Mode
The FreeBSD boot menu provides an option labelled as
	“Boot Single User”. If this option is selected,
	the system will boot into a special mode known as
	“single user mode”. This mode is typically used
	to repair a system that will not boot or to reset the
	root password when
	it is not known. While in single user mode, networking and
	other virtual consoles are not available. However, full
	root access to the
	system is available, and by default, the
	root password is not
	needed. For these reasons, physical access to the keyboard is
	needed to boot into this mode and determining who has physical
	access to the keyboard is something to consider when securing
	a FreeBSD system.
The settings which control single user mode are found in
	this section of /etc/ttys:
name getty type status comments
#
If console is marked "insecure", then init will ask for the root password
when going to single-user mode.
console none unknown off secure
By default, the status is set to
	secure. This assumes that who has physical
	access to the keyboard is either not important or it is
	controlled by a physical security policy. If this setting is
	changed to insecure, the assumption is that
	the environment itself is insecure because anyone can access
	the keyboard. When this line is changed to
	insecure, FreeBSD will prompt for the
	root password when a
	user selects to boot into single user mode.
Note:
Be careful when changing this setting to
	 insecure! If the
	 root password is
	 forgotten, booting into single user mode is still possible,
	 but may be difficult for someone who is not familiar with
	 the FreeBSD booting process.

3.2.3. Changing Console Video Modes
The FreeBSD console default video mode may be adjusted to
	1024x768, 1280x1024, or any other size supported by the
	graphics chip and monitor. To use a different video mode
	load the VESA module:
kldload vesa
To determine which video modes are supported by the
	hardware, use vidcontrol(1). To get a list of supported
	video modes issue the following:
vidcontrol -i mode
The output of this command lists the video modes that are
	supported by the hardware. To select a new video mode,
	specify the mode using vidcontrol(1) as the
	root user:
vidcontrol MODE_279
If the new video mode is acceptable, it can be permanently
	set on boot by adding it to
	/etc/rc.conf:
allscreens_flags="MODE_279"
